用c语言 产生服从均匀分布, 瑞利分布,莱斯分布,高斯分布的随机数

 
一,各个分布对应的基本含义:
  • 1. 均匀分布或称规则分布,顾名思义,均匀的,不偏差的。植物种群的个体是等距分布,或个体之间保持一定的均匀的间距。
  • 2. 高斯分布,  即正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。[1]  是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布
  • 3. 瑞利分布(Rayleigh Distribution):当一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布.
  • 4. 莱斯分布(Rice distribution或Rician distribution)是一种连续概率分布,以美国科学家斯蒂芬·莱斯(en:Stephen O. Rice)的名字命名。 正弦波加窄带高斯过程的包络概率密度函数分布称为莱斯(Rice)密度函数,也称广义瑞利分布。
 
二, 各个分布对应的随机变量产生的算法,
     
 
 # include "stdio.h"
# include "math.h"
# include "stdlib.h"
# include "math.h"
# include "dos.h"
# define MAX_N /*这个值为N可以定义的最大长度*/
# define N /*产生随机序列的点数,注意不要大于MAX_N*/ /*1.产生均匀分布的随机变量*/
void randa(float *x,int num); /*2.产生瑞利分布的随机变量*/
void randr(float *x,int num); /*3.产生标准高斯分布的随机变量*/
void randn(float *x,int num); /*4.产生莱斯分布的随机变量*/
void randl(float *x, float a, float b, int num); void fshow(char *name,float *x,int num); /***************************************/
int main()
{ float x[N];
int i; // randa(&x,N); //均匀分布
// randr(&x,N); //瑞利分布
// randl(&x,10,10,N); //莱斯分布
randn(&x,N); //高斯分布 /*此时x[N]表示要生成N个服从xx分布的的数组*/ fshow("x",&x,N); /*显示该序列*/ getch();
return 0; }
/***************函数定义************************/ /*产生服从均匀分布的随机变量*/
void randa(float *x,int num)
{
int i;
struct time stime;
unsigned seed;
gettime(&stime);
seed=stime.ti_hund*stime.ti_min*stime.ti_hour;
srand(seed);
for(i=;i<num;i++)
{
x[i]=rand();
x[i]=x[i]/;
}
}
/*产生服从瑞利分布的随机变量*/
void randr(float *x,int num)
{
float x1[MAX_N];
int i;
struct time stime;
unsigned seed;
gettime(&stime);
seed=stime.ti_hund*stime.ti_min*stime.ti_hour;
srand(seed);
for(i=;i<num;i++)
{
x1[i]=rand();
x[i]=x1[i]/;
x[i]=sqrt(-*log(x[i]));
} }
/*产生服从标准高斯分布的随机变量*/
void randn(float *x,int num)
{
float x1[MAX_N],x2[MAX_N];
int i;
struct time stime;
unsigned seed;
gettime(&stime);
seed=stime.ti_hund*stime.ti_min*stime.ti_hour;
srand(seed);
for(i=;i<num;i++)
{
x1[i]=rand();
x2[i]=rand();
x1[i]=x1[i]/;
x2[i]=x2[i]/;
x[i]=sqrt(-*log(x1[i]))*cos(x2[i]*M_PI);
} }
/*产生服从莱斯分布的随机变量*/
void randl(float *x, float a, float b, int num)
{
float x1[MAX_N],x2[MAX_N];
float temp[MAX_N];
int i;
struct time stime;
unsigned seed;
gettime(&stime);
seed=stime.ti_hund*stime.ti_min*stime.ti_hour;
srand(seed);
for(i=;i<num;i++)
{
x1[i]=rand();
x2[i]=rand();
x1[i]=x1[i]/;
x2[i]=x2[i]/;
temp[i]=sqrt(-*log(x1[i]))*cos(x2[i]*M_PI);
x2[i]=sqrt(-*log(x1[i]))*sin(x2[i]*M_PI);
x1[i]=temp[i];
x[i]=sqrt((a+x1[i])*(a+x1[i])+(b+x2[i])*(b+x2[i]));
} } void fshow(char *name,float *x,int num)
{
int i,sign,L;
float temp;
printf("\n");
printf(name);
printf(" = ");
L=;
/*按照每行6个数据的格式显示*/
for(i=;i<num;i++)
{
temp=i/L;
sign=temp;
if((i-sign*L)==) printf("\n");
if(x[i]>) printf(" %f ",x[i]);
else printf("%f ",x[i]);
}
}

其他分布的详细介绍, 请戳这里:http://www.math.uah.edu/stat/special/index.html

国外知名网站给出的各种分布的曲线图(后台程序驱动):

---OVER---

附录:   Cauchy 分布 随机数生成代码:

 import math
import random def cauchy(location, scale): # Start with a uniform random sample from the open interval (0, 1).
# But random() returns a sample from the half-open interval [0, 1).
# In the unlikely event that random() returns 0, try again. p = 0.0
while p == 0.0:
p = random.random() return location + scale*math.tan(math.pi*(p - 0.5))

C语言生成服从均匀分布, 瑞利分布, 莱斯分布, 高斯分布的随机数的更多相关文章

  1. Matlab 高斯分布 均匀分布 以及其他分布 的随机数

    Matlab 高斯分布 均匀分布 以及其他分布 的随机数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布 ...

  2. Javascript 随机数函数 学习之一:产生服从均匀分布随机数

    大家都知道Math.random是 javascript 中返回伪随机数的函数,但查看 MDN, The Math.random() function returns a floating-point ...

  3. HIVE- 数据倾斜

    数据倾斜就是由于数据分布不均匀,数据大量集中到一点上,造成数据热点.大多数情况下,分为一下三种情况: 1.map端执行比较快,reduce执行很慢,因为partition造成的数据倾斜. 2.某些re ...

  4. AWGN

    高斯白噪声的功率谱密度服从均匀分布,幅度分布服从高斯分布: 白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性: 高斯白噪声在任意两个不同时刻上的随机变量之间,不仅是互不相关的,而 ...

  5. 使用K-S检验一个数列是否服从正态分布、两个数列是否服从相同的分布

    假设检验的基本思想: 若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的.如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设. 实质分析: ...

  6. 各类分布----二项分布,泊松分布,负二项分布,gamma 分布,高斯分布,学生分布,Z分布

    伯努利实验: 如果无穷随机变量序列  是独立同分布(i.i.d.)的,而且每个随机变量  都服从参数为p的伯努利分布,那么随机变量  就形成参数为p的一系列伯努利试验.同样,如果n个随机变量  独立同 ...

  7. Java中利用Math.random()产生服从泊松分布的随机数

    众所周知.Java的Math.random()产生的是服从均匀分布的随机数,可是其它分布的应用也相当广泛,比如泊松分布和高斯分布(正态分布).而这些分布Java没有非常好的提供(高斯分布能够利用Ran ...

  8. C语言产生标准正态分布或高斯分布随机数

    C语言 产生标准正态分布或高斯分布 随机数 产生正态分布或高斯分布的三种方法: 1. 运用中心极限定理(大数定理) #include #include #define NSUM 25 double g ...

  9. R语言生成随机数

    1.概述 作为一种语言进行统计分析,R有一个随机数生成各种统计分布功能的综合性图书馆.R语言可以针对不同的分布,生成该分布下的随机数.其中,有许多常用的个分布可以直接调用.本文简单介绍生成常用分布随机 ...

随机推荐

  1. Redis集群(六):集群常用命令及说明

    一.本文目的        介绍集群的基本情况及常用命令      二.集群的特点    3.集群优缺点 三.集群客户端命令(redis-cli -c -p port) 集群cluster info ...

  2. nutch1.4 在windows下面提示 java.io.IOException: CreateProcess error=2, ϵͳÕҲ»µ½ָ¶

    eclipse运行nutch1.4在window下面提示异常解决 需要安装cynwin,被设置环境变量 1:安装cygwin 注:在选择要安装的软件包的时候我选择了在All这一行上后面的Default ...

  3. jquery-遍历each

    使用案例一 $.ajax({ url : webPath + "/clickCount", type : "POST", dataType : "js ...

  4. 初识React

    React 是Facebook开源的一个用于构建用户界面的Javascript库,已经 应用于Facebook及旗下Instagram React专注于MVC架构中的V,即视图 React引入了 虚拟 ...

  5. 单例模式:Instance

    前言: 学习面向对象程序设计的朋友应该知道,我们大多数情况下通过 new 操作来实例化对象的.对于一些仅需要一次初始化的对象来说,频繁的new操作无疑会过多浪费内存空间.基于此,单例模式便应运而生了. ...

  6. js-关于性能优化的一些学习总结

    性能优化的方法有: 1.减少HTTP请求:合并CSS/JS,使用CSS sprite等 2.压缩CSS/JS/图片 3.样式表放头部,JS放body底部:JS放在head中,将会等到js全部下载解析和 ...

  7. 【BZOJ-2177】曼哈顿最小生成树 Kruskal + 树状数组

    2177: 曼哈顿最小生成树 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 190  Solved: 77[Submit][Status][Discu ...

  8. 【bzoj1912】 Apio2010—patrol 巡逻

    http://www.lydsy.com/JudgeOnline/problem.php?id=1912 (题目链接) 题意 给出一棵树,要求在树上添加K(1 or 2)条边,添加的边必须经过一次,使 ...

  9. fstream使用简介

    fstream用来进行输入/输出文件的操作. fstream file1; 定义了fstream类的一个对象file1file1.open("filename",...) 打开名为 ...

  10. 洛谷P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...