A sequence of numbers is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequences:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic. 1, 1, 2, 5, 7 A zero-indexed array A consisting of N numbers is given. A subsequence slice of that array is any sequence of integers (P0, P1, ..., Pk) such that 0 ≤ P0 < P1 < ... < Pk < N. A subsequence slice (P0, P1, ..., Pk) of array A is called arithmetic if the sequence A[P0], A[P1], ..., A[Pk-1], A[Pk] is arithmetic. In particular, this means that k ≥ 2. The function should return the number of arithmetic subsequence slices in the array A. The input contains N integers. Every integer is in the range of -231 and 231-1 and 0 ≤ N ≤ 1000. The output is guaranteed to be less than 231-1. Example: Input: [2, 4, 6, 8, 10] Output: 7 Explanation:
All arithmetic subsequence slices are:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]

参考了https://discuss.leetcode.com/topic/67413/detailed-explanation-for-java-o-n-2-solution

这道题DP思路还是能想出来,Time O(N^2), Space O(N^2)

T(i, d), which denotes the total number of arithmetic subsequence slices ending at index i with difference d. The base case and recurrence relation are as follows:

  1. Base case: T(0, d) = 0 (This is true for any d).
  2. Recurrence relation: T(i, d) = summation of (1 + T(j, d)) as long as 0 <= j < i && d == A[i] - A[j].

这个地方有个Corner case, [2,2,3,4,5], 到3的时候,前面有两个2,这个+1具体应该怎么处理,如果直接+1并且用T(i,d)表示total number of arithmetic subsequence slices ending at index i with difference d的话, 那么到3这个数的时候T(2,1)==2,那不岂是表示3这里有两个valid arithmetic subsequence? 而我们知道其实是0个。

所以我们稍作改变T(i,d)表示total number of “generalized” arithmetic subsequence slices ending at index i with difference d, 这个"generalized" slices允许长度为2,

比如上例[2,2,3,4,5], 考虑diff==1的情况,到3的时候generalized slices number是2, 分别是[2, 3], [2, 3]

到4的时候generalized slices number是3,分别是[2,3,4], [2,3,4], [3,4]

到5的时候generalized slices number是4, 分别是[2,3,4,5], [2,3,4,5], [3,4,5], [4,5]

如此错了一位,算result的时候也错一位算

这道题又是一道用HashMap来做DP的题,是因为diff大小不确定,没有range,像这种没有range的DP,用HashMap吧

另外语法注意第3行,等号后面map不能再有泛型;第9行等号后面一定要有long

 public int numberOfArithmeticSlices(int[] A) {
int res = 0;
Map<Integer, Integer>[] map = new Map[A.length]; for (int i = 0; i < A.length; i++) {
map[i] = new HashMap<>(i); for (int j = 0; j < i; j++) {
long diff = (long)A[i] - A[j];
if (diff <= Integer.MIN_VALUE || diff > Integer.MAX_VALUE) continue; int d = (int)diff;
int c1 = map[i].getOrDefault(d, 0); //orignial value of T(i, d)
int c2 = map[j].getOrDefault(d, 0); //the counts from T(j, d)
res += c2;
map[i].put(d, c1 + c2 + 1);
}
} return res;
}

Leetcode: Arithmetic Slices II - Subsequence的更多相关文章

  1. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  2. Arithmetic Slices II - Subsequence LT446

    446. Arithmetic Slices II - Subsequence Hard A sequence of numbers is called arithmetic if it consis ...

  3. LeetCode 446. Arithmetic Slices II - Subsequence

    原题链接在这里:https://leetcode.com/problems/arithmetic-slices-ii-subsequence/ 题目: A sequence of numbers is ...

  4. 第六周 Leetcode 446. Arithmetic Slices II - Subsequence (HARD)

    Leetcode443 题意:给一个长度1000内的整数数列,求有多少个等差的子数列. 如 [2,4,6,8,10]有7个等差子数列. 想了一个O(n^2logn)的DP算法 DP[i][j]为 对于 ...

  5. [Swift]LeetCode446. 等差数列划分 II - 子序列 | Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  6. LeetCode446. Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  7. 446. Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  8. 446 Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    详见:https://leetcode.com/problems/arithmetic-slices-ii-subsequence/description/ C++: class Solution { ...

  9. [LeetCode] Arithmetic Slices 算数切片

    A sequence of number is called arithmetic if it consists of at least three elements and if the diffe ...

随机推荐

  1. 【BZOJ】1115: [POI2009]石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 题意:n堆石子,个数是从左到右单增.每一次可以从任意堆取出任意石子,但要保持单增这个性质.问先 ...

  2. C#中常用的与编码有关的代码

    如何将字符串转化为字符数组? char[] chars=str.ToArray(); 如何将字符串转化为字节数组? Encoding.ASCII.GetBytes(str); Encoding.Uni ...

  3. 关于多线程情况下Net-SNMP v3 版本导致进程假死情况的跟踪与分析

    1.问题描述 在使用net-snmp对交换机进行扫描的时候经常会出现进程假死的情况(就是进程并没有死掉,但是看不到它与外界进行任何的数据交互).这时候不知道进程内部发生了什么,虽然有日志信息,但进程已 ...

  4. 前端自动化工具 -- grunt 使用简介

    grunt作为一个前端构建工具,有资源压缩,代码检查,文件合并等功能. 下面就简单了解grunt的使用. 一.环境配置 grunt是基于nodejs的,所以需要一个 nodejs 环境,未了解的可以  ...

  5. Odoo 路线规则实现机制浅析

    事情是这个样子的:项目在实施过程中,碰到A仓库向B仓库供货的情况,心想这还不简单,老老实实地建多个仓库并将B仓库的供货仓库选为A仓库,再设置好产品的再订购规则,万事大吉了.然而,事情并非想象的那么简单 ...

  6. Jquery局部刷新小案列

    /* 调用showTest()方法去后台拿到处理数据后返回到part.jsp页面,main.jsp再调用html()方法 和显示的结果集show()方法把part.jsp显示到当前的页面,实现局部页面 ...

  7. sublime 3 注册码 - 亲测可用

    v3114. v3103可用 —– BEGIN LICENSE —– Ryan Clark Single User License EA7E-812479 2158A7DE B690A7A3 8EC0 ...

  8. 解决谷歌浏览器和360浏览器 input 自动填充淡黄色背景色的问题

     input:-webkit-autofill {-webkit-box-shadow: 0 0 0px 1000px white inset;}

  9. Android课程---Activity中保存和恢复用户状态

    onSaveInstanceState 保存 在暂停之后和保存之前调用 onRestoreInstanceState 恢复 再启动之后和显示之前调用 package com.example.chens ...

  10. JS开发windows phone8.1系列之2

    http://msdn.microsoft.com/zh-cn/library/windows/apps/dn629636.aspx Windows.Storage.ApplicationData.r ...