Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。
1、Convolution层:
就是卷积层,是卷积神经网络(CNN)的核心层。
层类型:Convolution
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
在后面的convolution_param中,我们可以设定卷积层的特有参数。
必须设置的参数:
num_output: 卷积核(filter)的个数
kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定
其它参数:
stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
pooling层的运算方法基本是和卷积层是一样的。

layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
4、im2col层
如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。
看一看图就知道了:
在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。
看看两种卷积操作的异同:
Caffe学习系列(3):视觉层(Vision Layers)及参数的更多相关文章
- [转] caffe视觉层Vision Layers 及参数
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
随机推荐
- 1.2 《硬啃设计模式》 第2章 学习设计模式需掌握的UML知识
要看懂设计模式,你需要懂类图(Class Diagram),也需要懂一点对象图(Object Diagram),下面介绍一些UML的必要知识,以便你学习设计模式. 属性.操作 下图简单介绍类的属性和操 ...
- Linux 折腾汇集,实时更新
一.Linux教程 入门教程:http://www.92csz.com/study/linux/ 命令大全:http://man.linuxde.net/ 一.界面: 在Ubuntu.Linux Mi ...
- MySQL 命令行工具之 mysqldump 深入研究
mysqldump 是MySQL的一个命令行工具,用于逻辑备份.可以将数据库和表的结构,以及表中的数据分别导出成:create database, create table, insert into的 ...
- sql server 索引分析相关sql
select object_id('dbo.FT_CFP_TRADE_SUBACCOUNT') select * from sys.partitions where [object_id]=14672 ...
- 烂泥:puppet3.7安装与配置
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 有关服务器的自动化管理,这方面以前没有接触过.打算这段时间把这块知识给补上. 现在服务器自动化管理软件,使用最多也最火的就是puppet了. 那么我们今 ...
- Linux系统管理命令之用户管理
1.添加用户useradd 2.删除用户userdel userdel aming 彻底删除用户(包括删除用户目录) userdel -r aming 3.用户修改usermod
- linux 中/proc 详解
proc 文件系统 在Linux中有额外的机制可以为内核和内核模块将信息发送给进程-- /proc 文件系统.最初设计的目的是允许更方便的对进程信息进行访问(因此得名),现在它被每一个有有趣的东西报告 ...
- Android Paint类方法说明
* Paint类介绍 * * Paint即画笔,在绘图过程中起到了极其重要的作用,画笔主要保存了颜色, * 样式等绘制信息,指定了如何绘制文本和图形,画笔对象有很多设置方法, * 大体上可以分为两类, ...
- C++浅析——返回对象的函数
一.原码分析 1.1 测试代码 为了方便查看拷贝构造函数调用过程,自定义了拷贝构造函数,但啥也没干. class CTEST { public: int m_nData; //Method: publ ...
- JAVA bio nio aio
[转自]http://qindongliang.iteye.com/blog/2018539 在高性能的IO体系设计中,有几个名词概念常常会使我们感到迷惑不解.具体如下: 序号 问题 1 什么是同步? ...