Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。
1、Convolution层:
就是卷积层,是卷积神经网络(CNN)的核心层。
层类型:Convolution
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
在后面的convolution_param中,我们可以设定卷积层的特有参数。
必须设置的参数:
num_output: 卷积核(filter)的个数
kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定
其它参数:
stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
pooling层的运算方法基本是和卷积层是一样的。

layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
4、im2col层
如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。
看一看图就知道了:
在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。
看看两种卷积操作的异同:
Caffe学习系列(3):视觉层(Vision Layers)及参数的更多相关文章
- [转] caffe视觉层Vision Layers 及参数
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
随机推荐
- TinyFox v2.3.2 正式发布,跨平台的.NET OWIN WEB服务器
TinyFox 是一款按照 OWIN 协议开发的以支持各类 OWIN 应用为主要特征的高性能 WEB 服务器,2.3.2版已经正式发布,下载地址 http://www.linuxdot.net/. ...
- Sql Server之旅——第三站 解惑那些背了多年聚集索引的人
说到聚集索引,我想每个码农都明白,但是也有很多像我这样的猥程序员,只能用死记硬背来解决这个问题,什么表中只能建一个聚集索引, 然后又扯到了目录查找来帮助读者记忆....问题就在这里,我们不是学文科,, ...
- Oracle 列转行函数 Listagg()
这是最基础的用法: LISTAGG(XXX,XXX) WITHIN GROUP( ORDER BY XXX) 例: select listagg(oeid,',') within GROUP (ord ...
- HTML5游戏开发引擎,初识CreateJS
CreateJS为CreateJS库,可以说是一款为HTML5游戏开发的引擎.打造 HTML5 游戏,构建新游戏,提供构建最新 HTML5 的技术.你可以通过这个网站学习如何构建跨平台和跨终端游戏.这 ...
- spring项目的 context root 修改之后,导致 WebApplicationContext 初始化两次的解决方法
修改了 spring web 项目的 context root 为 / 之后,在启动项目时,会导致 WebApplicationContext 初始化两次,下面是其初始化日志: 第一次初始化: 四月 ...
- 烂泥:NFS做存储与KVM集成
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 以前有关NFS的文章,我们介绍的都是NFS的使用挂载等等.这篇文章我们介绍有关NFS作为存储使用. 既然本篇文章的主题是有关NFS的,我们还是先把NFS ...
- DataTable去除重复行,根据某一字段进行distinct
网上有很多方法,比如利用视图处理: //去掉重复行 DataView dv = table.DefaultView; table = dv.ToTable(true, new string[] { & ...
- ios移动端切图及前端规范
移动端IOS知识普及:IOS标准分辨率:1242px * 2208px 切片要求: 1. 设计稿是按标准分辨率1242X2208设计,图片资源尺寸则是3倍图尺寸,将整个设计图压缩成750X133 ...
- 连载《一个程序猿的生命周期》-28、被忽悠来的单身HR(女同志)
一个程序猿的生命周期 微信平台 口 号:职业交流,职业规划:面对现实,用心去交流.感悟. 公众号:iterlifetime 百木-ITer职业交流奋斗 群:141588103 微 博:h ...
- Book LIst
Go ahead. Linux APUE Linux Kernel Development 鸟哥的linux私房菜 基础篇 鸟哥的linux私房菜 服务器篇 Network Computer Netw ...