Codeforces 1019C Sergey's problem 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html
题目传送门 - CF1019C
题意
给定一个有 $n$ 个节点 、 $m$ 条边的有向图,没有自环,但是可能存在环。
现在要求选出一个点集满足一下条件。
设原来的所有点构成的点集为 $V$ ,选出的点集为 $S$,则:
1. 对于所有满足 $x,y\in S$ 的点 $x,y$ ,有向边 $(x,y)$ 不存在。
2. 对于所有满足 $y\in V$ 的点,都可以找到一个点 $x(x\in S)$,满足从点 $x$ 开始走到 $y$ 的最少经过边数不超过 2 。
首先输出你选出的点数,然后按照编号从小到大输出你选的点。
$n,m\leq 10^6$
题解
我们考虑以下构造方案:
1. 记当前的图为 $G(V,E)$ 。
2. 选择一个节点 $A\in V$ ,从 $G$ 中删除节点 $A$ ,以及从 $A$ 出发的有向边连向的所有节点,得到新图 $G^\prime$ 。
3. 如果 $V^\prime \neq \emptyset $ ,则返回第 1. 步。否则到第 4 步。
4. 记之前选出的所有节点 $A$ 构成的集合为 $v$ ,取 $v$ 和 原图 $G$ 中只与 $v$ 中的点有关边集 $e$ ,构成新图 $g(v,e)$ 。容易得知,$g$ 是一个有向无环图。
5. 记当前的图为 $g(v,e)$ 。
6. 取一个入度为 $0$ 的节点 $a$ ,并将该节点加入答案集合 $S$,删除 $a$ 以及在 $g$ 中 $a$ 能一步走到的所有点。设得到的新图的点集为 $v^\prime$ 。
7. 如果 $v^\prime \neq \emptyset$ ,则返回第 1. 步。否则输出答案集合 $S$ 。
现在简单的说明一下这样做的正确性:
① 首先,显然任意两个属于答案集合点不能一步到达。
② 对于任意满足 $x\in v,x\notin S$ 的节点 $x$ ,它只可能在第 6 步被删除,那么,显然有一个能一步达到 $x$ 的节点被记入答案。
③ 对于任意满足 $x\in V,x\notin v$ 的节点 $x$ ,它只可能在第 2 步的时候被删除,那么,显然有一个能一步到达 $x$ 的节点 $y$ 在集合 $v$ 中。又根据 ② ,如果 $y\notin S$ ,有一步到 $y$ 的节点,则 $x$ 可以花两步到达;否则,$y\in S$ ,$x$ 可以由 $y$ 一步到达。
④ 由于属于答案集合的节点显然可以在 2 步以内到达,再根据 ②③ ,上述做法的正确性显然。
接下来就只差一个方便的实现方法了,详见代码。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
void write(int v){
int k=v/10;
if (v>9)
write(k);
putchar('0'+(v-k*10));
}
struct Gragh{
static const int M=1000005;
int cnt,y[M],nxt[M],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,m;
int vis[N],ans[N],anscnt=0;
int main(){
n=read(),m=read();
g.clear();
for (int i=1;i<=m;i++){
int a=read(),b=read();
g.add(a,b);
}
for (int i=1;i<=n;i++)
if (!vis[i]){
vis[i]=-2;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=min(vis[g.y[j]],-1);
}
for (int i=n;i>=1;i--)
if (vis[i]==-2){
ans[++anscnt]=i;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=-1;
}
write(anscnt),puts("");
for (int i=anscnt;i>=1;i--)
write(ans[i]),putchar(' ');
return 0;
}
Codeforces 1019C Sergey's problem 构造的更多相关文章
- [CF1019C]Sergey's problem[构造]
题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...
- 1019C Sergey's problem(思维)
题意: 找出来一个点集S 使得S中的点不能互相通过一步到达 并且S中的点 可以在小于等于2的步数下到达所有的点 要父结点 不要子结点 这样就求出来一个点集S‘ 而S'中可能存在 v -> u ...
- Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem
E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...
- Educational Codeforces Round 10 B. z-sort 构造
B. z-sort 题目连接: http://www.codeforces.com/contest/652/problem/B Description A student of z-school fo ...
- Codeforces 707C Pythagorean Triples(构造三条边都为整数的直角三角形)
题目链接:http://codeforces.com/contest/707/problem/C 题目大意:给你一条边,问你能否构造一个包含这条边的直角三角形且该直角三角形三条边都为整数,能则输出另外 ...
- Codeforces 1246D/1225F Tree Factory (构造)
题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...
- Codeforces - 1202D - Print a 1337-string... - 构造
https://codeforces.com/contest/1202/problem/D 当时想的构造是中间两个3,然后前后的1和7组合出n,问题就是n假如是有一个比较大的质数因子或者它本身就是质数 ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- codeforces.com/contest/325/problem/B
http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...
随机推荐
- POJ 2115
ax=b (mod n) 该方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0 令d=gcd(a,n) 有该方程的 最小整数解为 x = e (mod n/d) 其中e ...
- 自动化工具 Sikuli-Script 使用
Sikuli-IDE用起来方便,但是用到实际项目中还是有局限性的,Sikuli提供了Sikuli-Script的jar包,在Sikuli-X的安装目录下,这样就可以在 eclipse中使用JAVA编写 ...
- 16)django-ajax使用
通过ajax可以悄悄的把数据传输给服务器,实现页面无刷新. 一:ajax使用语法 1)普通方式 ajax使用语法: $.ajax({ url:"/host", //提交到那里 ty ...
- python介绍、解释器、变量及其它
python 一.python及编程语言介绍 编程语言发展:机器语言==>汇编语言==>高级语言 机器语言:由数字电路发展而来编程都是靠0101的二进制进行 汇编语言:汇编语言的实质和机器 ...
- PHP中使用Redis长连接笔记
pconnect函数声明 其中time_out表示客户端闲置多少秒后,就断开连接.函数连接成功返回true,失败返回false: pconnect(host, port, time_out, pers ...
- 配置 Confluence 6 安全的最佳实践
让一个系统能够变得更加坚固的最好办法是将系统独立出来.请参考你公司的安全管理策略和相关人员来找到你公司应该采用何种安全策略.这里有很多事情需要我们考虑,例如考虑如何安装我们的操作系统,应用服务器,数据 ...
- js之DOM对象三
一.JS中for循环遍历测试 for循环遍历有两种 第一种:是有条件的那种,例如 for(var i = 0;i<ele.length;i++){} 第二种:for (var i in ...
- 《剑指offer》顺时针打印矩阵
本题来自<剑指offer> 顺时针打印矩阵 题目: 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 1 ...
- laravel 视图
在实际开发中,除了 API 路由返回指定格式数据对象外,大部分 Web 路由返回的都是视图,以便实现更加复杂的页面交互,我们在前面已经看到过了视图的定义方式: return view('以.分隔的视图 ...
- bzoj 2761
神题... 其实这题巨水,用各种诡异的方法都能A,包括STL等等 我之所以写题解,是因为我发现了一个bug:bz和luogu时限有问题! 这题我用了两种做法: ①:直接使用STL-map(不能直接用数 ...