Codeforces 1019C Sergey's problem 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html
题目传送门 - CF1019C
题意
给定一个有 $n$ 个节点 、 $m$ 条边的有向图,没有自环,但是可能存在环。
现在要求选出一个点集满足一下条件。
设原来的所有点构成的点集为 $V$ ,选出的点集为 $S$,则:
1. 对于所有满足 $x,y\in S$ 的点 $x,y$ ,有向边 $(x,y)$ 不存在。
2. 对于所有满足 $y\in V$ 的点,都可以找到一个点 $x(x\in S)$,满足从点 $x$ 开始走到 $y$ 的最少经过边数不超过 2 。
首先输出你选出的点数,然后按照编号从小到大输出你选的点。
$n,m\leq 10^6$
题解
我们考虑以下构造方案:
1. 记当前的图为 $G(V,E)$ 。
2. 选择一个节点 $A\in V$ ,从 $G$ 中删除节点 $A$ ,以及从 $A$ 出发的有向边连向的所有节点,得到新图 $G^\prime$ 。
3. 如果 $V^\prime \neq \emptyset $ ,则返回第 1. 步。否则到第 4 步。
4. 记之前选出的所有节点 $A$ 构成的集合为 $v$ ,取 $v$ 和 原图 $G$ 中只与 $v$ 中的点有关边集 $e$ ,构成新图 $g(v,e)$ 。容易得知,$g$ 是一个有向无环图。
5. 记当前的图为 $g(v,e)$ 。
6. 取一个入度为 $0$ 的节点 $a$ ,并将该节点加入答案集合 $S$,删除 $a$ 以及在 $g$ 中 $a$ 能一步走到的所有点。设得到的新图的点集为 $v^\prime$ 。
7. 如果 $v^\prime \neq \emptyset$ ,则返回第 1. 步。否则输出答案集合 $S$ 。
现在简单的说明一下这样做的正确性:
① 首先,显然任意两个属于答案集合点不能一步到达。
② 对于任意满足 $x\in v,x\notin S$ 的节点 $x$ ,它只可能在第 6 步被删除,那么,显然有一个能一步达到 $x$ 的节点被记入答案。
③ 对于任意满足 $x\in V,x\notin v$ 的节点 $x$ ,它只可能在第 2 步的时候被删除,那么,显然有一个能一步到达 $x$ 的节点 $y$ 在集合 $v$ 中。又根据 ② ,如果 $y\notin S$ ,有一步到 $y$ 的节点,则 $x$ 可以花两步到达;否则,$y\in S$ ,$x$ 可以由 $y$ 一步到达。
④ 由于属于答案集合的节点显然可以在 2 步以内到达,再根据 ②③ ,上述做法的正确性显然。
接下来就只差一个方便的实现方法了,详见代码。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
void write(int v){
int k=v/10;
if (v>9)
write(k);
putchar('0'+(v-k*10));
}
struct Gragh{
static const int M=1000005;
int cnt,y[M],nxt[M],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,m;
int vis[N],ans[N],anscnt=0;
int main(){
n=read(),m=read();
g.clear();
for (int i=1;i<=m;i++){
int a=read(),b=read();
g.add(a,b);
}
for (int i=1;i<=n;i++)
if (!vis[i]){
vis[i]=-2;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=min(vis[g.y[j]],-1);
}
for (int i=n;i>=1;i--)
if (vis[i]==-2){
ans[++anscnt]=i;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=-1;
}
write(anscnt),puts("");
for (int i=anscnt;i>=1;i--)
write(ans[i]),putchar(' ');
return 0;
}
Codeforces 1019C Sergey's problem 构造的更多相关文章
- [CF1019C]Sergey's problem[构造]
题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...
- 1019C Sergey's problem(思维)
题意: 找出来一个点集S 使得S中的点不能互相通过一步到达 并且S中的点 可以在小于等于2的步数下到达所有的点 要父结点 不要子结点 这样就求出来一个点集S‘ 而S'中可能存在 v -> u ...
- Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem
E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...
- Educational Codeforces Round 10 B. z-sort 构造
B. z-sort 题目连接: http://www.codeforces.com/contest/652/problem/B Description A student of z-school fo ...
- Codeforces 707C Pythagorean Triples(构造三条边都为整数的直角三角形)
题目链接:http://codeforces.com/contest/707/problem/C 题目大意:给你一条边,问你能否构造一个包含这条边的直角三角形且该直角三角形三条边都为整数,能则输出另外 ...
- Codeforces 1246D/1225F Tree Factory (构造)
题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...
- Codeforces - 1202D - Print a 1337-string... - 构造
https://codeforces.com/contest/1202/problem/D 当时想的构造是中间两个3,然后前后的1和7组合出n,问题就是n假如是有一个比较大的质数因子或者它本身就是质数 ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- codeforces.com/contest/325/problem/B
http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...
随机推荐
- linux服务器上配置多个svn仓库
linux服务器上配置多个svn仓库 1.在指定目录建立仓库保存总目录,本文示例目录设定为:/usr/local/svn/svnrepos # mkdir -p /usr/local/svn/svnr ...
- C++ sizeof()练习
class A { int a; short b; int c; char d; }; class B { double a; short b; int c; char d; }; 在32位机器上用g ...
- Maven多模块项目加载
Maven多模块项目中如何让Spring运行时成功加载指定的子模块 将子模块pom加入到父模块pom的定义中,并继承父模块 在web.xml中配置加载子模块的Spring配置文件 在启 ...
- Oracle数据库内存使用情况分析查看
SGA.PGA使用情况 select name,total,round(total-free,2) used, round(free,2) free,round((total-free)/total* ...
- Pl/SQL 编程
Pl/SQL 编程 一:前言 二:Pl/Sql 概述 二 —— 1: Pl/Sql块结构 [declare] --声明部分,可选 begin --执行部分,必须 [exception] -- ...
- Confluence 6 查看空间活动需要注意的地方
希望查看空间的活动情况,Confluence Usage Stats 插件必须在系统中启用.这个插件启用的话将会导致系统的性能问题.针对大型的 Confluence 站点,这个插件在默认情况下是禁用 ...
- ORM 对象关系映射
ORM (object relation mapping) 就是将对象数据转换为sql语句并执行 对象关系映射框架 orm 需要做的事情 1 生成创建表的语句 2 插入数据的语句 3 删除数据的语句 ...
- day11 函数的位置形参,位置实参,可变长位置形参,关键字形参
今天内容 函数的参数详解 形参与实参 形参及形式参数,就是在定义函数是括号中指定的参数(本质就是一个名字) 实参及实际参数,指的是在调用函数是传入的参数)(本质就是一个值) 在调用函数是就会把形参和实 ...
- 《剑指offer》 链表中倒数第k个节点
本题来自<剑指offer> 链表中倒数第k个节点 题目: 输入一个链表,输出该链表中倒数第k个结点. 思路: 倒数第k个节点,而且只能访问一遍链表,定义两个节点,两者之间相差k个距离,遍历 ...
- servlet 遇到的奇怪问题
一. servlet URl 连接多了 %09 原因value里面多了个空格 value=" value'; 改成 value="value'; 二.servlet get方法可以 ...