原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html

题目传送门 - CF1019C

题意

  给定一个有 $n$ 个节点 、 $m$ 条边的有向图,没有自环,但是可能存在环。

  现在要求选出一个点集满足一下条件。

  设原来的所有点构成的点集为 $V$ ,选出的点集为 $S$,则:

  1. 对于所有满足 $x,y\in S$ 的点 $x,y$ ,有向边 $(x,y)$ 不存在。

  2. 对于所有满足 $y\in V$ 的点,都可以找到一个点 $x(x\in S)$,满足从点 $x$ 开始走到 $y$ 的最少经过边数不超过 2 。

  首先输出你选出的点数,然后按照编号从小到大输出你选的点。

  $n,m\leq 10^6$

题解

  我们考虑以下构造方案:

  1. 记当前的图为 $G(V,E)$ 。

  2. 选择一个节点 $A\in V$ ,从 $G$ 中删除节点 $A$ ,以及从 $A$ 出发的有向边连向的所有节点,得到新图 $G^\prime$ 。

  3. 如果 $V^\prime \neq \emptyset $ ,则返回第 1. 步。否则到第 4 步。

  4. 记之前选出的所有节点 $A$ 构成的集合为 $v$ ,取 $v$ 和 原图 $G$ 中只与 $v$ 中的点有关边集 $e$ ,构成新图 $g(v,e)$ 。容易得知,$g$ 是一个有向无环图。

  5. 记当前的图为 $g(v,e)$ 。

  6. 取一个入度为 $0$ 的节点 $a$ ,并将该节点加入答案集合 $S$,删除 $a$ 以及在 $g$ 中 $a$ 能一步走到的所有点。设得到的新图的点集为 $v^\prime$ 。

  7. 如果 $v^\prime \neq \emptyset$ ,则返回第 1. 步。否则输出答案集合 $S$ 。

  现在简单的说明一下这样做的正确性:

    ① 首先,显然任意两个属于答案集合点不能一步到达。

    ② 对于任意满足 $x\in v,x\notin S$ 的节点 $x$ ,它只可能在第 6 步被删除,那么,显然有一个能一步达到 $x$ 的节点被记入答案。

    ③ 对于任意满足 $x\in V,x\notin v$ 的节点 $x$ ,它只可能在第 2 步的时候被删除,那么,显然有一个能一步到达 $x$ 的节点 $y$ 在集合 $v$ 中。又根据 ② ,如果 $y\notin S$ ,有一步到 $y$ 的节点,则 $x$ 可以花两步到达;否则,$y\in S$ ,$x$ 可以由 $y$ 一步到达。

    ④ 由于属于答案集合的节点显然可以在 2 步以内到达,再根据 ②③ ,上述做法的正确性显然。

  接下来就只差一个方便的实现方法了,详见代码。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
void write(int v){
int k=v/10;
if (v>9)
write(k);
putchar('0'+(v-k*10));
}
struct Gragh{
static const int M=1000005;
int cnt,y[M],nxt[M],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,m;
int vis[N],ans[N],anscnt=0;
int main(){
n=read(),m=read();
g.clear();
for (int i=1;i<=m;i++){
int a=read(),b=read();
g.add(a,b);
}
for (int i=1;i<=n;i++)
if (!vis[i]){
vis[i]=-2;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=min(vis[g.y[j]],-1);
}
for (int i=n;i>=1;i--)
if (vis[i]==-2){
ans[++anscnt]=i;
for (int j=g.fst[i];j;j=g.nxt[j])
vis[g.y[j]]=-1;
}
write(anscnt),puts("");
for (int i=anscnt;i>=1;i--)
write(ans[i]),putchar(' ');
return 0;
}

  

Codeforces 1019C Sergey's problem 构造的更多相关文章

  1. [CF1019C]Sergey's problem[构造]

    题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...

  2. 1019C Sergey's problem(思维)

    题意: 找出来一个点集S  使得S中的点不能互相通过一步到达 并且S中的点 可以在小于等于2的步数下到达所有的点 要父结点 不要子结点 这样就求出来一个点集S‘  而S'中可能存在 v -> u ...

  3. Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem

    E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...

  4. Educational Codeforces Round 10 B. z-sort 构造

    B. z-sort 题目连接: http://www.codeforces.com/contest/652/problem/B Description A student of z-school fo ...

  5. Codeforces 707C Pythagorean Triples(构造三条边都为整数的直角三角形)

    题目链接:http://codeforces.com/contest/707/problem/C 题目大意:给你一条边,问你能否构造一个包含这条边的直角三角形且该直角三角形三条边都为整数,能则输出另外 ...

  6. Codeforces 1246D/1225F Tree Factory (构造)

    题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...

  7. Codeforces - 1202D - Print a 1337-string... - 构造

    https://codeforces.com/contest/1202/problem/D 当时想的构造是中间两个3,然后前后的1和7组合出n,问题就是n假如是有一个比较大的质数因子或者它本身就是质数 ...

  8. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  9. codeforces.com/contest/325/problem/B

    http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...

随机推荐

  1. cmder 神器 +curl

    cmder 神器 https://www.jianshu.com/p/7a706c0a3411 curl https://www.cnblogs.com/zhuzhenwei918/p/6781314 ...

  2. HTML之Position用法

    在此,先做声明,本篇仅是摘录自互联网,个人认为这篇文章讲的很不错,附于此地与大家共同欣赏. position的四个属性值: 1.relative2.absolute3.fixed4.static下面分 ...

  3. filter(HTML)滤镜用法

    CCS滤镜参考语法:STYLE="filter:filtername(fparameter1, fparameter2...)" (Filtername为滤镜的名称,fparame ...

  4. idea 去除xml文件sql语句背景色

    怎么看idea mapper.xml中写sql语句的那种屎黄屎黄背景颜色不好看 去除背景色 把这两项勾选去掉,然后 把这个背景勾选也去掉,最后 把这个勾选也去掉 另一种方式: 也可以使用这种方式 al ...

  5. 对mysql数据库中字段为空的处理

    数据库中字段为空的有两种:一种为null,另一种为空字符串.null代表数值未知,空字符串是有值得,只是为空.有时间我们想把数据库中的数据以excel形式导出时 如果碰到字段为空的,为空的字段会被后面 ...

  6. 在 Confluence 6 中禁用 workbox 应用通知

    如果你选择 不提供应用通知(does not provide in-app notifications): Confluence workbox 图标将不会可见同时用户也不能在这个服务器上访问 wor ...

  7. ionic3 国际化

    http://www.cnblogs.com/huangenai/p/6868173.html 按上面这个网站的步骤整一遍, 但是ionic3 会报错  所以 在 import { NgModule ...

  8. 分布式通讯架构RPC简单实现

    什么是RPC: RPC(Remote Procedure Call,远程过程调用),一般用来实现部署在不同机器上的系统之间的方法调用,使得程序能够像访问本地系统资源一样,通过网络传输去访问远端系统资源 ...

  9. cf1110E 思维

    /* Ci'=Ci+1 + Ci-1 -Ci Ci+1 - Ci' = Ci - Ci-1 Ci' - Ci-1 = Ci+1 - Ci; 即求一次Ci’等价于交换Ci和Ci-1 与 Ci+1和Ci的 ...

  10. pycharm提示This inspection detects instance attribute definition outside __init__ method

    示例代码: class MiNiCarStore(CarStore): def createCar(self, typeName): self.carFactory = CarFactory() # ...