题目描述

给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。

例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4],

连续子序列 [4,-1,2,1] 的和最大,为 6。

扩展练习:

若你已实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

思路

思路一:

maxSum 必然是以nums[i](取值范围为nums[0] ~ nums[n-1])结尾的某段构成的,也就是说maxSum的candidate必然是以nums[i]结果的。如果遍历每个candidate,然后进行比较,那么就能找到最大的maxSum了。

假设把nums[i]之前的连续段叫做sum。可以很容易想到:

  1. 如果sum>=0,就可以和nums[i]拼接在一起构成新的sum。因为不管nums[i]多大,加上一个正数总会更大,这样形成一个新的candidate。
  2. 反之,如果sum<0,就没必要和nums[i]拼接在一起了。因为不管nums[i]多小,加上一个负数总会更小。此时由于题目要求数组连续,所以没法保留原sum,所以只能让sum等于从nums[i]开始的新的一段数了,这一段数字形成新的candidate。
  3. 如果每次得到新的candidate都和全局的maxSum进行比较,那么必然能找到最大的max sum subarray.

在循环过程中,用maxSum记录历史最大的值。从nums[0]到nums[n-1]一步一步地进行。

思路二:

遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) 和 (这个数字) 比大小,如果(这个数字)自己就比 (之前的sum + 这个数字) 大的话,那么说明不需要再继续加了,直接从这个数字,开始继续,因为它自己已经比之前的sum都大了。

反过来,如果 (之前的sum + 这个数字)大于 (这个数字)就继续加下去。

利用动态规划做题。

只遍历数组一遍,当从头到尾部遍历数组A, 遇到一个数有两种选择 (1)加入之前subArray (2)自己另起一个subArray

设状态S[i], 表示以A[i]结尾的最大连续子序列和,状态转移方程如下:

S[i] = max(S[i-1] + A[i],A[i])

从状态转移方程上S[i]只与S[i-1]有关,与其他都无关,因此可以用一个变量来记住前一个的最大连续数组和就可以了。这样就可以节省空间了。

代码实现

package Array;

/**
* 53.Maximum Subarray(最大子序和)
* 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。
* 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4],
* 连续子序列 [4,-1,2,1] 的和最大,为 6。
*/
public class Solution53 {
public static void main(String[] args) {
Solution53 solution53 = new Solution53();
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println(solution53.maxSubArray(arr));
} /**
* maxSum 必然是以nums[i](取值范围为nums[0] ~ nums[n-1])结尾的某段构成的,也就是说maxSum的candidate必然是以nums[i]结果的。如果遍历每个candidate,然后进行比较,那么就能找到最大的maxSum了。
* 假设把nums[i]之前的连续段叫做sum。可以很容易想到:
* 1. 如果sum>=0,就可以和nums[i]拼接在一起构成新的sum。因为不管nums[i]多大,加上一个正数总会更大,这样形成一个新的candidate。
* 2. 反之,如果sum<0,就没必要和nums[i]拼接在一起了。因为不管nums[i]多小,加上一个负数总会更小。此时由于题目要求数组连续,所以没法保留原sum,所以只能让sum等于从nums[i]开始的新的一段数了,这一段数字形成新的candidate。
* 3. 如果每次得到新的candidate都和全局的maxSum进行比较,那么必然能找到最大的max sum subarray.
* 在循环过程中,用maxSum记录历史最大的值。从nums[0]到nums[n-1]一步一步地进行。
*
* @param nums
* @return
*/
public int maxSubArray(int[] nums) {
int sum = 0; //或者初始化为 sum = INT_MIN 也OK。
int maxSum = nums[0];
for (int i = 0; i < nums.length; i++) {
if (sum >= 0) {
sum += nums[i];
} else {
sum = nums[i];
}
if (sum > maxSum) {
maxSum = sum;
}
}
return maxSum;
} /**
* 遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) 和 (这个数字) 比大小,如果(这个数字)自己就比 (之前的sum + 这个数字) 大的话,那么说明不需要再继续加了,直接从这个数字,开始继续,因为它自己已经比之前的sum都大了。
* 反过来,如果 (之前的sum + 这个数字)大于 (这个数字)就继续加下去。
* 利用动态规划做题。
* 只遍历数组一遍,当从头到尾部遍历数组A, 遇到一个数有两种选择 (1)加入之前subArray (2)自己另起一个subArray
* 设状态S[i], 表示以A[i]结尾的最大连续子序列和,状态转移方程如下:
* S[i] = max(S[i-1] + A[i],A[i])
* 从状态转移方程上S[i]只与S[i-1]有关,与其他都无关,因此可以用一个变量来记住前一个的最大连续数组和就可以了。
* 这样就可以节省空间了。
* 时间复杂度:O(n) 空间复杂度:O(1)
*/
public int maxSubArray_2(int[] nums) {
int sum = 0; //或者初始化为 sum = INT_MIN 也OK。
int maxSum = nums[0];
//动态规划
for (int i = 0; i < nums.length; i++) {
sum = Math.max(sum + nums[i], nums[i]);
maxSum = Math.max(sum, maxSum);
}
return maxSum;
}
}

Leetcode#53.Maximum Subarray(最大子序和)的更多相关文章

  1. LeetCode 53. Maximum Subarray最大子序和 (C++)

    题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  2. 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...

  3. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  4. [leetcode]53. Maximum Subarray最大子数组和

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  5. 53. Maximum Subarray最大子序和

    网址:https://leetcode.com/problems/maximum-subarray/submissions/ 很简单的动态规划 我们可以把 dp[i] 表示为index为 i 的位置上 ...

  6. 【LeetCode】Maximum Subarray(最大子序和)

    这道题是LeetCode里的第53道题. 题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1 ...

  7. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  8. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  9. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

随机推荐

  1. [hdu5215][Cycle]

    题目链接 思路 首先可以通过二分图染色找到奇环和一部分偶环.这个比较简单 但是还有一种偶环容易忽略. 如图(别问我为啥没节点4) 第一次可以找到1-2-3-1)这个奇环,第二次可以找到(3-5-6-3 ...

  2. 关于TSql

    1.Sql:结构化查询语言(Structrued  Query  Language) 2.TSql:是Sql语言的另一种版本,且只能在SqlServer中使用.和Sql不同的是,TSql中增加了对变量 ...

  3. IntelliJ IDEA Cannot resolve symbol ''

    study from : https://www.cnblogs.com/linmengfei/p/7909196.html File->Invalidate Caches 点击File | I ...

  4. python学习笔记—Day1

    1. python使用<变量名>=<表达式>的方式对变量进行赋值 a=1; python中数分为整数和浮点数 字符串的定义一定要用引号,单引号和双引号是等价的 三引号用来输入包 ...

  5. 用python画三角函数

    Pyplot http://www.labri.fr/perso/nrougier/teaching/matplotlib/ pyplot提供了一个方便的matplotlib基于对象库的借口,是模仿了 ...

  6. (链表 set) leetcode 817. Linked List Components

    We are given head, the head node of a linked list containing unique integer values. We are also give ...

  7. STM32F103 ------ BOOT0 / BOOT1

    BOOT0/BOOT1的状态只是在CPU复位之后的4个周期内,被用作启动的依据,系统启动之后,或是取得了复位向量之后,BOOT0/BOOT1的状态可以任意变化,而不影响CPU的运行. 所以只需要保证在 ...

  8. Python之偏函数

    学前知识储备: 函数在Python是第一类对象 (Python中一切皆对象). 第一类对象的特性: ----1.可以被引用 ----2.可以当做参数传入 ----3.可以当做函数返回值 ----4.可 ...

  9. MYSQL Innodb逻辑存储结构

    转载于网络 这几天在读<MySQL技术内幕 InnoDB存储引擎>,对 Innodb逻辑存储结构有了些了解,顺便也记录一下: 从InnoDB存储引擎的逻辑存储结构看,所有数据都被逻辑地存放 ...

  10. JVM高手之路七(tomcat调优以及tomcat7、8性能对比)

         版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/lirenzuo/article/details/77164033 因为每个链路都会对其性能 ...