LOJ#2127「HAOI2015」按位或
用$ Min-Max$容斥之后要推的东西少了好多
无耻的用实数快读抢了BZOJ、Luogu、LOJ三个$ OJ$的Rank 1
即将update:被STO TXC OTZ超了QAQ
题意:集合$ [0,2^n)$中每次以一定给出概率产生一个数,求产生数按位或值为$ 2^n-1$的数字数量期望
$ Solution:$
根据$ Min-Max$容斥,令$ Max(S)$表示所有位中最后一次出现的时间,$Min(S)$表示第一次出现的时间
显然有$ ans=Max(S)$
根据$ Min-Max$容斥有
$ Max(S)=\sum\limits(-1)^{|T|+1}Min(T)$
现在的问题是如何快速求出$ Min(S)$
由于$ Min(S)$的意义是集合$ S$中第一次出现的位置的出现时间的期望
有每次随机到集合$ S$中某一位的概率为:
$ \sum\limits_{T \cap S \neq \emptyset}P_T$
其中$ P_T$是产生$ T$这个数的概率
因此可以得知
$ Min(S)=\frac{1}{\sum\limits_{T \cap S \neq \emptyset}P_T}$
其中和原集有交可以转化成不属于原集的补集
求原集的补集可以用$ FMT/FWT$优化,时间复杂度$ O(n·2^n)$
$ my \ code:$
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt,tot;
double a[];
namespace fast_IO{
const int IN_LEN=,OUT_LEN=;
char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lastin=ibuf+IN_LEN,*lastout=obuf+OUT_LEN-;
inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+fread(ibuf,,IN_LEN,stdin),ih==lastin)?EOF:*ih++;}
inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,,oh-obuf,stdout),oh=obuf;*oh++=x;}
inline void flush(){fwrite(obuf,,oh-obuf,stdout);}
}
using namespace fast_IO;
#define getchar() getchar_()
double readf(){
char ch=getchar();
while(!isdigit(ch))ch=getchar();
double value=ch-'';
ch=getchar();
while(isdigit(ch)){
value=value*+ch-'';
ch=getchar();
}
if(ch=='.'){
double cur=0.1;
ch=getchar();
while(isdigit(ch)){
value+=cur*(ch-'');
cur*=0.1;
ch=getchar();
}
}
return value;
}
int main(){
tot=read();n=<<tot;
for(rt i=;i<n;i++)a[i]=readf();
for(rt i=;i<tot;i++)
for(rt j=;j<n;j++)if(j>>i&)a[j]+=a[j^(<<i)];
double ans=;
for(rt i=;i<tot;i++)if(a[n-^(<<i)]==)return puts("INF"),;
for(rt i=;i<n;i++)if(a[i]<-0.0000001){
if(__builtin_popcount(i)+tot&)
ans+=1.0/(1.0-a[i]);else ans-=1.0/(1.0-a[i]);
}
printf("%.10f",ans);
return ;
}
LOJ#2127「HAOI2015」按位或的更多相关文章
- 【LOJ】#2127. 「HAOI2015」按位或
题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 「HAOI2015」按位或
「HAOI2015」按位或 解题思路 : 这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可. \[ E(minS) = \frac{1} ...
- 【LOJ2127】「HAOI2015」按位或
题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
随机推荐
- .net 调用 网易云的短信验证
static string url = "https://api.netease.im/sms/sendcode.action"; static string appKey = & ...
- haploview画出所有SNP的LD关系图
有时候我们想画出所有SNP的LD关系图,则需要在命令行添加“-skipcheck”命令行,如下所示: java -jar Haploview.jar -skipcheck -n -pedfile 80 ...
- 第二十四节,TensorFlow下slim库函数的使用以及使用VGG网络进行预训练、迁移学习(附代码)
在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用 ...
- Linux基础入门教程
Linux基础入门教程 --------- Linux学习路径 Linux学习者,常常不知道自己改怎么学习linux:Linux初级,也就是入门linux前提是需要有一些计算机硬件相关的知识或是有一下 ...
- puppeteer,新款headless chrome
puppeteer puppeteer是一种谷歌开发的Headless Chrome,因为puppeteer的出现,业内许多自动化测试库停止维护,比如PhantomJS,Selenium IDE fo ...
- Vue less使用scope时渗入修改子组件样式
@deep: ~'>>>'; .wrap { @{deep} .component1 { width: 120px; } }
- HDFS集群优化篇
HDFS集群优化篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.操作系统级别优化 1>.优化文件系统(推荐使用EXT4和XFS文件系统,相比较而言,更推荐后者,因为XF ...
- HDFS-Shell 文件操作
一.操作 HDFS 上的文件有两个命令可以用 hdfs dfs:只能操作 HDFS 上的文件 Usage: hdfs [--config confdir] [--loglevel loglevel] ...
- System.Web.Optimization 合并压缩技术的使用
捆绑和压缩原理是:将多个css文件动态合并和压缩为一个css文件.多个js文件动态合并和压缩为一个js文件,如此达到减少浏览器对服务器资源文件的请求数量.缩小资源文件的尺寸来提高页面反应速度的目的.A ...
- 解决Navicat 出错:1130-host . is not allowed to connect to this MySql server,MySQL
1. 改表法. 可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑,登入MySQL后,更改 "mysql" 数据库里的 " ...