基于python的OpenCV图像1
1. 读入图片并显示
import cv2
img = cv2.imread("longmao.jpg")
cv2.imshow("longmao", img)
cv2.waitKey(0) #等待按键,0表示永久等待
cv2.destroyAllWindows() #完成之后销毁窗体

2. RGB通道分离
基于numpy数组的方法
r = img[:, :, 2]
g = img[:, :, 1]
b = img[:, :, 0]
注意:OpenCV读取的顺序是BGR。
**基于OpenCV的RGB通道分离
b, g, r = cv2.split(img) #得到三个通道的值
b = cv2.split(img)[0]
3. RGB通道分离
img2 = cv2.merge([b, g, r])
4. 单像素处理
img[9, 9, 2] #通过数组索引的方式获取某个像素值,
#获取第10行,第10列(从0开始)的单独R颜色分量
5. 遍历图像
img = cv2.imread("longmao.jpg")
img2 = np.zeros(img.shape)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img2[i, j, 0] = img[i, j, 0] #b分量
#img2[i, j, 1] = img[i, j, 1] #g分量
#img2[i, j, 2] = img[i, j, 3] #R分量
#img2[i, j] = cv2.merge([img2[i, j, 0], img2[i, j, 1], img2[i, j, 2]])
cv2.imshow("copy", img2)
cv2.waitKey(0)
cv2.destroyAllWindows() #完成之后销毁窗体
图片的蓝色分量显示

5. 给图片添加椒盐噪声
import numpy as np
import cv2
def addPepperAndSalt(img, n):
img2 = img
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 255
img2[x, y, 1] = 255
img2[x, y, 2] = 255
return img2
img = cv2.imread("longmao.jpg")
img2 = addPepperAndSalt(img, 5000)
cv2.imshow("salt and pepper", img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
注:np.random.random():返回[0.0, 1)的随机数,默认是一个,括号里面可以选返回随机数的数量

6. 添加椒盐噪声进阶版
import cv2
import numpy as np
def peppersalt(img, n, m):
"""
Add peppersalt to image
:param img: the image you want to add noise
:param n: the total number of noise (0 <= n <= width*height)
:param m: different mode
m=1:add only white noise in whole image
m=2:add only black noise in whole image
m=3:add black and white noise in whole image
m=4:add gray scale noise range from 0 to 255
m=5:add color noise in whole image,RGB is combined randomly with every channel ranges from 0 to 255
:return: the processed image
"""
img2 = img
if m == 1:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 255 #添加白色噪声
img2[x, y, 1] = 255
img2[x, y, 2] = 255
elif m == 2:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 0 #黑色
img2[x, y, 1] = 0
img2[x, y, 2] = 0
elif m == 3:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
flag = np.random.random() * 255 #随机添加白色或黑色
if flag > 128:
img2[x, y, 0] = 255
img2[x, y, 1] = 255
img2[x, y, 2] = 255
else:
img2[x, y, 0] = 0
img2[x, y, 1] = 0
img2[x, y, 2] = 0
elif m == 4:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
flag = int(np.random.random() * 255) #随机颜色
img2[x, y, 0] = flag
img2[x, y, 1] = flag
img2[x, y, 2] = flag
elif m == 5:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
f1 = int(np.random.random() * 255) #彩色
f2 = int(np.random.random() * 255)
f3 = int(np.random.random() * 255)
img2[x, y, 0] = f1
img2[x, y, 1] = f2
img2[x, y, 2] = f3
return img2
if __name__ == "__main__":
img = cv2.imread("longmao.jpg")
img = peppersalt(img, 500, 5)
cv2.imshow("salt and pepper", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
7. 实现下雪demo

def snow2pic(img, n):
"""
:param img: input a rgb picture
:param n: density of the snow
:return: the pic with snow in the top
"""
#length, width = img.shape
#top_length = length * 0.35
for i in range(n):
x = int(np.random.random() * img.shape[0] * 0.35)
y = int(np.random.random() * img.shape[1])
img[x, y, 0] = 255 # 添加白色噪声
img[x, y, 1] = 255
img[x, y, 2] = 255
for i in range(200):
x = int(np.random.random() * img.shape[0] * 0.8)
y = int(np.random.random() * img.shape[1])
img[x, y, 0] = 255 # 添加白色噪声
img[x, y, 1] = 255
img[x, y, 2] = 255
return img
if __name__ == "__main__":
img = cv2.imread("longmao.jpg")
img = snow2pic(img, 400)
cv2.imshow("salt and pepper", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于python的OpenCV图像1的更多相关文章
- BugKu 2B+基于python的opencv的安装-------CTF 盲水印的套路
BugKu杂项-2B 下载图片后,binwalk下跑一跑,发现有个zip,分离. 值得一提的是,这个zip是伪加密的. 但是你在分离的时候,伪加密的图片也给你分离出来了.这两个图片2B和B2肉眼看起来 ...
- Python下opencv使用笔记(图像频域滤波与傅里叶变换)
Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654 收藏 展开 本文转载自 https://blog ...
- Python 图像处理 OpenCV (14):图像金字塔
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...
- Python下opencv使用笔记(一)(图像简单读取、显示与储存)
写在之前 从去年開始关注python这个软件,途中间间断断看与学过一些关于python的东西.感觉python确实是一个简单优美.easy上手的脚本编程语言,众多的第三方库使得python异常的强大. ...
- Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...
- Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (5):图像的几何变换
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (6):图像的阈值处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- mr实现pagerank
PageRank计算什么是pagerankPageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度.是Google创始人拉里·佩奇和谢尔盖·布林于1997 ...
- left join中where与on的区别
举例进行说明,我们现在有两个表,即商品表(products)与sales_detail(销售记录表).我们主要是通过这两个表来对MySQL关联left join 条件on与where 条件的不同之处进 ...
- AX_SysTableBrowser
sysTableBrowser sysTableBrowser = new sysTableBrowser(); ; sysTableBrowser.setAllowEdit(true); sy ...
- C#读取word内容实践
C#读取word文档是如何实现的呢?我们可以使用FileStream对象来把文本文件里面的信息读取出来,但是对于word文档来说就不能使用这样的方法了. 这种情况下C#读取word文档的实现我们需要使 ...
- H5新特性-canvas绘图--渐变对象路径(最复杂)--图片--变形操作
今天的目标 3.1:canvas绘图--(重点掌握:渐变对象.路径.图片.变形) 3.2:canvas绘图--渐变对象 线性渐变: linearGradient 径向渐变: var g = ctx.c ...
- angularjs ng-bind-html的用法总结
angular中的$sanitize服务. 此服务依赖于ngSanitize模块.(这个模块需要加载angular-sanitize.js插件) 要学习这个服务,先要了解另一个指令: ng-bing- ...
- day32 进程
上午: # 1 开启子进程 #target #args # if __name__ == '__main__' #start() # 2.其它的方法: #方法: #terminate() #is_al ...
- hql- 使用like的小坑①
like '%_test_' 要把反斜杠进行转义like '%\_test\_'
- (转)MySql中监视增删改查和查看日志记录
转载地址为:http://blog.51cto.com/hades02/1641652 首先在命令行输入 show global variables like '%general%' ,然后出现下面的 ...
- 编译Spark源码
Spark编译有两种处理方式,第一种是通过SBT,第二种是通过Maven.作过Java工作的一般对于Maven工具会比较熟悉,这边也是选用Maven的方式来处理Spark源码编译工作. 在开始编译工作 ...