线性空间和异或空间(线性基)bzoj4004贪心+高斯消元优秀模板
线性空间:是由一组基底构成的所有可以组成的向量空间
对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩
并且这i个主元线性无关
/*
每个向量有权值,求最小权极大线性无关组 本题是使用贪心策略的高斯消元
由输入给出的n个物品,每个物品有m种属性,和价格price
如果a物品的属性可以由其他已有物品的属性组合出,那么a可以不必购买
问最少花掉多少钱,使得所有物品都可以组合出
首先构建n*m矩阵,然后高斯消元
在求第i个主元时,取价格最小的那个即可
可用反证法证明
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 1005
#define ld long double
#define esp 1e-6
struct Vec{//带权向量
ld a[maxn];
int w;
bool operator<(const Vec & x)const {
return w<x.w;
}
}p[maxn];
int n,m; int main(){
cin>>n>>m;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
cin>>p[i].a[j];
for(int i=;i<=n;i++)scanf("%d",&p[i].w);
sort(p+,p++n);//按权值从小到大排即可
int ans=,cnt=;
//高斯消元!
int i=,j=,Max,Maxw;
for(;i<=n && j<=m;i++,j++){
Max=i;
if(fabs(p[Max].a[j])>esp)//这里一定要加fabs,因为可能会有赋值
Maxw=p[Max].w;
else Maxw=; for(int k=i+;k<=n;k++)
if(fabs(p[k].a[j])>esp && p[k].w<Maxw){Max=k;Maxw=p[k].w;}
if(fabs(p[Max].a[j])<esp){i--;continue;} ans+=Maxw;cnt++;
if(Max!=i)//把Max换到第i行
swap(p[i],p[Max]); for(int k=;k<=n;k++)//把每行的第j个数消为0
if(k!=i){
ld r=(ld)p[k].a[j]/p[i].a[j];
for(int t=;t<=m;t++)
p[k].a[t]-=r*p[i].a[t];
p[k].a[j]=;
}
} printf("%d %d\n",cnt,ans);
}
网上找到一中贼快的高斯消元写法。。以后就用它了
思路是枚举矩阵上的每个元素,对于每个非0的A[i][j],如果A[i][j]可以作为主元,那么就把F[j](即第j列上的主元)标记为i,因为剩下的位如何已经不重要了,所以直接退出本轮循环,继续下一行
若A[i][j]不可以作主元,说明第j列已经有主元了,那么就用那个主元所在的行F[j]来消A[i][j]
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
#define double long double
const double eps=1e-;
struct str
{
double a[];
int v;
bool operator < (const str &s) const
{
return v<s.v;
}
}a[];
int n,m,f[];
int main()
{
int i,j,k,ans1=,ans2=;
double x;
cin>>n>>m;
for (i=;i<=n;i++)
for (j=;j<=m;j++)
cin>>a[i].a[j];
for (i=;i<=n;i++)
cin>>a[i].v;
sort(a+,a+n+);
for (i=;i<=n;i++)
for (j=;j<=m;j++)
if (fabs(a[i].a[j])>eps)
{
if (!f[j])//如果第j列还没有被作为秩,并且第i行第j列非0
{
f[j]=i;
ans1++;
ans2+=a[i].v;
break;
}
else//反之就用A[f[j]][j]来消去A[i][j]
{
x=a[i].a[j]/a[f[j]].a[j];
for (k=j;k<=m;k++)
a[i].a[k]-=a[f[j]].a[k]*x;
}
}
cout<<ans1<<" "<<ans2<<endl;
}
线性空间和异或空间(线性基)bzoj4004贪心+高斯消元优秀模板的更多相关文章
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基
[BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...
- [hdu 3949]线性基+高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...
- 【XSY2701】异或图 线性基 容斥原理
题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...
- 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)
Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...
- bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...
随机推荐
- mysql 8.0 ~ 存储和账户
一 简介:关于存储数据文件的改进二 数据文件: 1合并了存储数据库对象信息的事务性数据字典 1 相关文件等存储引擎层存储元数据文件已消失,只有ibd文件,元数据存储在数据字典表 ...
- 【NLP CS224N笔记】Lecture 3 GloVe: Global Vectors for Word Representation
I. 复习word2vec的核心思路 1. Skip-gram 模型示意图: 2.word vectors的随机梯度 假设语料库中有这样一行句子: I love deep learning and N ...
- java程序内存监控
- activemq学习笔记2
基本步骤: ConnectionFactory factory = new ActiveMQConnectionFactory("tcp://127.0.0.1:61616"); ...
- 【转】Linux下查看系统配置
[转]Linux下查看系统配置 CPU 1. lscpu:显示cpu架构信息 [xxx@localhost ~]$ lscpu Architecture: x86_64 CPU op-mode(s): ...
- [JLOI2011]飞行路线 不同的算法,不同的悲伤
题目 :BZOJ2763 洛谷P4568 [JLOI2011]飞行路线 一道最短路的题目,想想写个题解也不错(好久没写题解了_(:з」∠)_) 然后这道题中心思路是dijikstra处理最短路,所以没 ...
- CodeForces 937C Save Energy! 水题
题意: 一个炉子烤鸡,炉子打开的时候一共$T$分钟可以烤完,关闭的时候一共$2T$分钟可以烤完,炉子每$K$分钟自动关闭,厨师每$D$分钟回来检查,打开炉子 问多长时间烤完.. 题解: 用整数写比较稳 ...
- (并发编程)进程池线程池--提交任务2种方式+(异步回调)、协程--yield关键字 greenlet ,gevent模块
一:进程池与线程池(同步,异步+回调函数)先造个池子,然后放任务为什么要用“池”:池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务池子内什么时候装进程:并发的任务 ...
- 天宝MB-Two:无法打开web登陆界面
在浏览器中访问http://192.168.1.100,正常是打开MB-Two芯片的web 登陆界面,但是事与愿违,打开的是帮助界面. 解决办法: 用串口调试助手,波特率默认是115200,连接过去. ...
- MVC5访问SQL Server数据库
参考: MVC5+EF6简单实例---以原有SQLServer数据库两表联合查询为例 1.新建MVC项目: 新建基于MVC5的项目,命名为PracticeProject 2.Models文件夹(右击) ...