题目描述

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

输入

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。

输出

一行一个数,最多进行多少次配对

样例输入

3
2 4 8
2 200 7
-1 -2 1

样例输出

4

提示

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

有数量上限、有价值,显然费用流,因为题目要求费用不小于$0$,所以用最大费用最大流。将每个点拆成两个点$i$和$i'$,分别与源点和汇点连边,流量为$b[i]$、费用为$0$。枚举任意两个数判断是否能匹配。因为$i$与$j$能匹配,$j$就能与$i$匹配,所以将$i$与$j'$连边、$j$与$i'$连边,流量为$INF$、费用为$-c[i]*c[j]$(因为跑最大费用最大流,边权取反)。每次$SPFA$找到一条增广路,如果加上之后答案满足要求就继续增广,否则就停止。因为一对数的匹配算了两次,所以最后答案除$2$即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 1000000000000000ll
#define inf 1000000000
using namespace std;
int head[1000];
int next[100000];
int to[100000];
ll v[100000];
int c[100000];
int f[1000];
int from[100000];
int tot=1;
int S,T;
ll ans;
int n;
int A[300];
int B[300];
int C[300];
queue<int>q;
int vis[1000];
ll d[1000];
int maxflow;
void add(int x,int y,ll z,int w)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
v[tot]=z;
c[tot]=w;
from[tot]=x;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
v[tot]=-z;
c[tot]=0;
from[tot]=y;
}
bool result()
{
int now=T;
int flow=inf;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
if(ans+d[T]*flow<=0)
{
ans+=d[T]*flow;
maxflow+=flow;
}
else
{
maxflow+=fabs(ans)/fabs(d[T]);
return 1;
}
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
return 0;
}
bool SPFA()
{
for(int i=1;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
q.push(S);
vis[S]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+v[i])
{
d[to[i]]=d[now]+v[i];
f[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void find_max()
{
while(SPFA())
{
if(result())
{
break;
}
}
}
bool check(int x,int y)
{
if(x<y)
{
swap(x,y);
}
if(x%y)
{
return false;
}
int d=x/y;
for(int i=2;i*i<=d;i++)
{
if(d%i==0)
{
return false;
}
}
return true;
}
int main()
{
scanf("%d",&n);
S=2*n+1,T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d",&A[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&B[i]);
add(S,i,0,B[i]);
add(i+n,T,0,B[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&C[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(check(A[i],A[j]))
{
add(i,n+j,-1ll*C[i]*C[j],1<<30);
add(j,n+i,-1ll*C[i]*C[j],1<<30);
}
}
}
find_max();
printf("%d",maxflow/2);
}

BZOJ4514[Sdoi2016]数字配对——最大费用最大流的更多相关文章

  1. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  2. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  3. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  4. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  5. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  6. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  7. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  8. 【BZOJ4514】数字配对(费用流)

    题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci× ...

  9. [SDOI2016]数字配对(费用流+贪心+trick)

    重点是如何找到可以配对的\(a[i]\)和\(a[j]\). 把\(a[i]\)分解质因数.设\(a[i]\)分解出的质因数的数量为\(cnt[i]\). 设\(a[i]\geq a[j]\) 那么\ ...

随机推荐

  1. 面试 5:手写 Java 的 pow() 实现

    我们在处理一道编程面试题的时候,通常除了注意代码规范以外,千万要记得自己心中模拟一个单元测试.主要通过三方面来处理. 功能性测试 边界值测试 负面性测试 不管如何,一定要保证自己代码考虑的全面,而不要 ...

  2. RabbitMQ教程(二) ——linux下安装rabbitmq

    安装过程参考官网: Installing on RPM-based Linux (RHEL, CentOS, Fedora, openSUSE) 首先需要安装erlang,参考:http://fedo ...

  3. SSH(poderosa)を使って、さくらのMySQLサーバーに接続する方法

    SSH(poderosa)を使って.さくらのMySQLサーバーに接続する方法の覚書. 現在のさくらサーバーでは.新規ユーザーはTELNETが使えない.なので.データベースをコマンドラインで操作するには ...

  4. 内置函数二: map sorted filter

    -----------生活里没有奇迹,大部分的时候奇迹是你自己创造的. # -------------------------------------------------------------- ...

  5. iOS数据存储-钥匙串存储

    2017.11.20 14:41* 字数 227 阅读 678评论 0喜欢 0 钥匙串介绍   1. 表示设备唯一号的标识,在IOS7中要么被禁止使用,要么重新安装程序后两次获取的标识符不一样. 2. ...

  6. js tool 方法之删除数组指定项

    最近又开始写博文了,还是在自己的本地项目上做一些小的方法案例. 之前撸代码的时候总是遇到删除数组里某个元素的问题,JS没提供便捷的方法,只能自己写个循环处理,所幸自己写个方法,以后博客项目里要用到就不 ...

  7. 在IDEA中配置Spring的XML装配

    不考虑混合模式的话,Spring有三类装配Bean的方法,自动装配和Java代码装配都会很容易上手,但在弄XML装配时遇到了问题,这与IDEA环境有关. 装配时需要在源码中配置XML文件的位置,我看别 ...

  8. Jenkins Installing and migration

    JAVA_Zookeeper_hadoop - CSDN博客https://blog.csdn.net/wangmuming Installing Jenkins on Red Hat distrib ...

  9. vue单页面模板说明文档(1)

    Introduction This boilerplate is targeted towards large, serious projects and assumes you are somewh ...

  10. php trait使用

    trait类似于基类  同样的方法优先级为 本类>trait>基类 <?php /** * Created by PhpStorm. * User: mac * Date: 2019 ...