There is Inception-v3 model python implementation on GitHub at: https://github.com/tensorflow/models/tree/master/inception

There are several shell scripts in /inception/inception/data folder. these scripts only can run on Linux OS, especially on Ubuntu. So. how can we set up the Inception-v3 model on Windows. let's dive into these scripts code.

In download_and_preprocess_flowers.sh. first, the script download flower_photo.tgz file from the web. second, make some directories and set some environment. these folders are used to store flowers data and flower train and validate data after processing. almost environment variables are used as the argument in last scripts call.

  • DATA_DIR : root directory after unpacking flower_photo.tgz file.
  • TRAIN_DIRECTORY : the sub-directory of flower data. always be "flowers-data/raw-data/train".
  • VALIDATION_DIRECTORY: the sub-directory of flower data that store pictures for validating. always be "flowers-data/raw-data/validation".
  • LABELS_FILE: the file path of lable.txt, always be "flowers-data/raw-data/labels.txt".
  • OUTPUT_DIRECTORY : somewhere to store processed data.

Then, the script will call another script build_image_data.py.

There are some arguments in this script. we can use environment variables we just set before or set the specific path to these arguments. notice, we just call the build_image_data.py script directly with a command: python build_image_data.py --train_directory="${TRAIN_DIRECTORY}" --validation_directory="${VALIDATION_DIRECTORY}" --output_directory="${OUTPUT_DIRECTORY}" --labels_file="${LABELS_FILE}

this script will convert separated pictures to a union file batch with TFRecords format with Examples protos.

The Example proto:
contains the following fields:

image/encoded: string containing JPEG encoded image in RGB colorspace
image/height: integer, image height in pixels
image/width: integer, image width in pixels
image/colorspace: string, specifying the colorspace, always 'RGB'
image/channels: integer, specifying the number of channels, always 3
image/format: string, specifying the format, always'JPEG'

image/filename: string containing the basename of the image file
e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG'
image/class/label: integer specifying the index in a classification layer.
The label ranges from [0, num_labels] where 0 is unused and left as
the background class.
image/class/text: string specifying the human-readable version of the label
e.g. 'dog'

After processing, we can find some training and validation files in the DATA_DIR. 

Before training. we have to do some adjustment to the source code. because Inception-v3 is written with an older version of tensorflow. some API has already discarded.

  • tf.scalar_summary    ->  tf.summary.scalar
  • tf.histogram_summary -> tf.summary.histogram
  • tf.merge_summary  -> tf.summary.merge
  • tf.train.SummaryWriter -> tf.summary.FileWriter
  • tf.concat(0,[ymin, xmin, ymax, xmax]) -> tf.concat([ymin, xmin, ymax, xmax],0)  switch argument.

      Maybe, there also has some error. just look up tensorflow documentation and change it.

We also need to do one step in addition before we start training. cause these python scripts are separated not in a python package. we need to add an empty __init__.py file to inception folder. and make a replica of flowers_train.py on parent-directory. then execute this script.

Make sure you have already installed tensorflow on your windows. notice, tensorflow only supports python 3.4+ on Windows, and there are two types tensorflow, one is CPU only, another is tensorflow-GPU. if you have a GPU have enough compute ability, you can choose the GPU version.  check Installing guide on the tensorflow website is helpful. https://www.tensorflow.org/install/install_windows

We will discuss some arguments in flower_train.py in after articles.

How to setup Tensorflow inception-v3 model on Windows的更多相关文章

  1. 脸型分类-Face shape classification using Inception v3

    本文链接:https://blog.csdn.net/u011961856/article/details/77984667函数解析github 代码:https://github.com/adoni ...

  2. Inception V3 的 tensorflow 实现

    tensorflow 官方给出的实现:models/inception_v3.py at master · tensorflow/models · GitHub 1. 模型结构 首先来看 Incept ...

  3. 源码分析——迁移学习Inception V3网络重训练实现图片分类

    1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域 ...

  4. 微调Inception V3网络-对Satellite分类

    目录 1. 流程概述 2. 准备数据集 2.1 Satellite数据集介绍 3. Inception V3网络 4. 训练 4.1 基于Keras微调Inception V3网络 4.2 Keras ...

  5. 1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

    ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding va ...

  6. Setup Tensorflow with GPU on Mac OSX 10.11

    Setup Tensorflow with GPU on OSX 10.11 环境描述 电脑:MacBook Pro 15.6 CPU: 2.7GHz 显卡: GT 650m 系统:OSX 10.11 ...

  7. How to set up Tensorflow inception-v3 model on Windows

    There is Inception-v3 model python implementation on GitHub at: https://github.com/tensorflow/models ...

  8. 网络结构解读之inception系列四:Inception V3

    网络结构解读之inception系列四:Inception V3   Inception V3根据前面两篇结构的经验和新设计的结构的实验,总结了一套可借鉴的网络结构设计的原则.理解这些原则的背后隐藏的 ...

  9. 从GoogLeNet至Inception v3

    从GoogLeNet至Inception v3 一.CNN发展纵览 我们先来看一张图片: 1985年,Rumelhart和Hinton等人提出了后向传播(Back Propagation,BP)算法( ...

随机推荐

  1. 常用vi编辑器命令

    对于VI的命令行,不需要特意的去记忆,写下来,让要用到的时候能找到就行 游标控制 h 游标向左移 j 游标向下移 k 游标向上移 l (or spacebar) 游标向右移 w 向前移动一个单词 b ...

  2. 在虚拟机上利用宿主机共享目录编译linux程序

    #前提条件: 宿主机:windows7 虚拟机:REDHAT 开发环境 qt4.7.4 +vs2010 . 代码在windows7 上编译成功 ,运行正常 在linux下编译需要的第三方库已经编译成功 ...

  3. spark学习笔记_1

    简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...

  4. python-markdown

    python-markdown无法将“`生成标签问题解决方法 2种都是代码区块 ```swift is Int ``` is Int

  5. DataBase——Mysql的DataHelper

    源帖 https://www.cnblogs.com/youuuu/archive/2011/06/16/2082730.html 保护原帖,尊重技术,致敬工匠! using System; usin ...

  6. 2018.8.8 SpringMVC分层

    分层: 表示层:请求分发,调用处理器,页面展示. 业务层:业务处理接口和实现. 持久层:数据访问和持久化. 各层之间解耦,下层对上层透明. 具体代码分析如下图,图转自https://blog.csdn ...

  7. 终于不再在懵逼mysql原生语句,orm超级登场

    import sqlalchemy from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import cre ...

  8. RabbitMQ全网资料收集

    RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.AMQP 的出现其实也是应了广大人民群众的需求,虽然在同步消息通讯的世界里有很多公开标准 ...

  9. SP3871 GCDEX - GCD Extreme

    //author Eterna #define Hello the_cruel_world! #pragma GCC optimize(2) #include<iostream> #inc ...

  10. python 如何编写一个自己的包

    python 如何编写一个自己的包 先写function 内容 package/wadepypk$ ls __init__.py f1.py f2.py f1.py def show(): print ...