Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Solution

看着黄学长的题解才弄懂这道题的QAQ,我数论真的好差啊...

求$gcd(x,y)=p$,p为素数的x,y取值有多少种

每个素数p对答案的贡献是$1$~$n/p$的有序互质对个数

我们可以设$y>=x$,显然当$x$确定的时候这个素数$p$的贡献就是$\phi(y)$

所以有序质数对的个数为$\sum_{i=1}^{i<=n/p}{\phi(i)}*2-1$

(有序质数对所以乘2,然后(1,1)在这里被算了2次所以-1)

#include <bits/stdc++.h>

using namespace std ;

#define ll long long
const int N = 1e7+ ; int n , tot ;
int phi[ N ] , p[ N ] ;
ll c[ N ] , ans ;
bool v[ N ] ; void eular() {
phi[ ] = ;
for( int i = ; i <= n ; i ++ ) {
if( !v[ i ] ) {
phi[ i ] = i - ;
p[ ++ tot ] = i ;
}
for( int j = ; j <= tot ; j ++ ) {
if( p[ j ] * i > n ) break ;
v[ i * p[ j ] ] = ;
if( i % p[ j ] == ) { phi[ i * p[ j ] ] = phi[ i ] * p[ j ] ; break ; }
else phi[ i * p[ j ] ] = phi[ i ] * phi[ p[ j ] ] ;
}
}
} int main() {
scanf( "%d" , &n ) ;
eular() ;
for( int i = ; i <= n ; i ++ )
c[ i ] = c[ i - ] + phi[ i ] ;
for( int i = ; i <= tot ; i ++ ) {
ans += c[ n / p[ i ] ] * - ;
}
printf( "%lld\n" , ans ) ;
}

BZOJ2818: Gcd 欧拉函数的更多相关文章

  1. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  2. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  3. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  9. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. TortoiseGit密钥的配置(转)

    add by zhj:说到密钥,就不得不提非对称加密.目前使用最广泛的非对称加密算法是rsa,它是美国三位科学家于1977年发明的. 一对密钥对有两个密钥,其中一个为私钥,一个为公钥,两者没有什么区别 ...

  2. 对Django框架架构和Request/Response处理流程的分析(转)

    原文:http://blog.sina.com.cn/s/blog_8a18c33d010182ts.html 一. 处理过程的核心概念 如下图所示django的总览图,整体上把握以下django的组 ...

  3. 可以搜索到DedeCms后台文章列表文档id吗?或者快速定位id编辑文章

    我们在建站时有的时候发现之前的文章有错误了,要进行修改,但又不知道文章名,只知道大概的文章id,那么可以搜索到DedeCms后台文章列表文档id吗?或者快速定位文章id方便修改? 第一种方法:复制下面 ...

  4. Jquery-plugins-toastr-消息提示

    toastr是一个基于jQuery简单.漂亮的消息提示插件,使用简单.方便,可以根据设置的超时时间自动消失. 1.使用很简单,首选引入toastr的js.css文件 html <link rel ...

  5. Spark Storage(二) 集群下的broadcast

    Broadcast 简单来说就是将数据从一个节点复制到其他各个节点,常见用于数据复制到节点本地用于计算,在前面一章中讨论过Storage模块中BlockManager,Block既可以保存在内存中,也 ...

  6. [py]pycharm远程环境添加

    pycharm配置settings.jar pycharm远程环境调用.zip xadmin xadmin-django2 pycharm激活 最新2018.2激活---更新2018年8月8日 15: ...

  7. Leetcode: Longest Consecutive Sequence && Summary: Iterator用法以及ConcurrentModificationException错误说明

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...

  8. 登录使用inode的校园网用到的url

    无需使用inode客户端,直接访问下面的url,然后输入账号密码即可. 第一次访问这个url的时候可能会提示下载inode客户端,再访问一次即可. url1:http://172.20.1.1/por ...

  9. js匿名自执行函数中闭包的高级使用(---------------------------******-----------------------------)

    先看看最常见的一个问题: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  10. 使用Spring实现读写分离( MySQL实现主从复制)(转)

    本文转自:http://blog.csdn.net/jack85986370/article/details/51559232 1.  背景 我们一般应用对数据库而言都是“读多写少”,也就说对数据库读 ...