Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Solution

看着黄学长的题解才弄懂这道题的QAQ,我数论真的好差啊...

求$gcd(x,y)=p$,p为素数的x,y取值有多少种

每个素数p对答案的贡献是$1$~$n/p$的有序互质对个数

我们可以设$y>=x$,显然当$x$确定的时候这个素数$p$的贡献就是$\phi(y)$

所以有序质数对的个数为$\sum_{i=1}^{i<=n/p}{\phi(i)}*2-1$

(有序质数对所以乘2,然后(1,1)在这里被算了2次所以-1)

#include <bits/stdc++.h>

using namespace std ;

#define ll long long
const int N = 1e7+ ; int n , tot ;
int phi[ N ] , p[ N ] ;
ll c[ N ] , ans ;
bool v[ N ] ; void eular() {
phi[ ] = ;
for( int i = ; i <= n ; i ++ ) {
if( !v[ i ] ) {
phi[ i ] = i - ;
p[ ++ tot ] = i ;
}
for( int j = ; j <= tot ; j ++ ) {
if( p[ j ] * i > n ) break ;
v[ i * p[ j ] ] = ;
if( i % p[ j ] == ) { phi[ i * p[ j ] ] = phi[ i ] * p[ j ] ; break ; }
else phi[ i * p[ j ] ] = phi[ i ] * phi[ p[ j ] ] ;
}
}
} int main() {
scanf( "%d" , &n ) ;
eular() ;
for( int i = ; i <= n ; i ++ )
c[ i ] = c[ i - ] + phi[ i ] ;
for( int i = ; i <= tot ; i ++ ) {
ans += c[ n / p[ i ] ] * - ;
}
printf( "%lld\n" , ans ) ;
}

BZOJ2818: Gcd 欧拉函数的更多相关文章

  1. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  2. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  3. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  4. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  5. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  9. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. lua源代码学习(一)lua的c api外围实现

    工作后,整个人已经比較松懈了.尽管一直在看lua的源代码.可是一直是比較零碎的时间,没有系统的整理,所以还是收获不多.由于近期工作也不是非常忙了,就想整理下lua的源代码学习的笔记.加深下印象,并分享 ...

  2. CSS 3列等高

    方法1: <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"&g ...

  3. gradle build scan

    1:gradle build scan 用于视图审查 构建步骤如下  https://guides.gradle.org/creating-build-scans/?_ga=2.80362963.59 ...

  4. Flask中'endpoint'(端点)的理解

    翻译整理自Stack Overflow:http://stackoverflow.com/questions/19261833/what-is-an-endpoint-in-flask 原文中用到了m ...

  5. numpy的prod()函数和pad()函数

    1.np.prod()函数用来计算所有元素的乘积,对于有多个维度的数组可以指定轴,如axis=1指定计算每一行的乘积. 2.np.lib.pad()函数用来把原来的list在原来的维度上进行扩展 例1 ...

  6. Linear Regression Using Gradient Descent 代码实现

    参考吴恩达<机器学习>, 进行 Octave, Python(Numpy), C++(Eigen) 的原理实现, 同时用 scikit-learn, TensorFlow, dlib 进行 ...

  7. 使用Linux工作之Fedora KDE

    小明拿着在Windows下不断蓝屏的T440和公司建议不使用云笔记的规定,心下想着,是时候回归linux了... 一.系统的获取与启动盘的制作 fedora20 KDE版 liveusb-creato ...

  8. VS中出现“链接器工具错误,XXX工具模块对于SAFESEH映像是不安全的”的解决方法

    1.“调试”菜单->“属性”->“配置属性”->“链接器”->“命令行” 2.在“其它选项”的输入框里输入 /SAFESEH:NO ,点击“应用”

  9. QQ 客服设置

    不说那么多了. 目前可以通过此方式实现添加的效果 <a target="_blank" href="http://wpa.qq.com/msgrd?v=3& ...

  10. Qt之美(一):D指针/私有实现

    The English version is available at: http://xizhizhu.blogspot.com/2010/11/beauty-of-qt-1-d-pointer-p ...