在OpenSceneGraph中绘制OpenCascade的曲面

Render OpenCascade Geometry Surfaces in OpenSceneGraph

eryar@163.com

摘要Abstract:本文对OpenCascade中的几何曲面数据进行简要说明,并结合OpenSceneGraph将这些曲面显示。

关键字Key Words:OpenCascade、OpenSceneGraph、Geometry Surface、NURBS

一、引言 Introduction

《BRep Format Description White Paper》中对OpenCascade的几何数据结构进行了详细说明。BRep文件中用到的曲面总共有11种:

1.Plane 平面;

2.Cylinder 圆柱面;

3.Cone 圆锥面;

4.Sphere 球面;

5.Torus 圆环面;

6.Linear Extrusion 线性拉伸面;

7.Revolution Surface 旋转曲面;

8.Bezier Surface 贝塞尔面;

9.B-Spline Surface B样条曲面;

10.Rectangle Trim Surface 矩形裁剪曲面;

11.Offset Surface 偏移曲面;

曲面的几何数据类都有一个共同的基类Geom_Surface,类图如下所示:

Figure 1.1 Geometry Surface class diagram

抽象基类Geom_Surface有几个纯虚函数Bounds()、Value()等,可用来计算曲面上的点。类图如下所示:

Figure 1.2 Geom_Surface class diagram

与另一几何内核sgCore中的几何的概念一致,几何(geometry)是用参数方程对曲线曲面精确表示的。

每种曲面都对纯虚函数进行实现,使计算曲面上点的方式统一。

曲线C(u)是单参数的矢值函数,它是由直线段到三维欧几里得空间的映射。曲面是关于两个参数u和v的矢值函数,它表示由uv平面上的二维区域R到三维欧几里得空间的映射。把曲面表示成双参数的形式为:

它的参数方程为:

u,v参数形成了一个参数平面,参数的变化区间在参数平面上构成一个矩形区域。正常情况下,参数域内的点(u,v)与曲面上的点r(u,v)是一一对应的映射关系。

给定一个具体的曲面方程,称之为给定了一个曲面的参数化。它既决定了所表示的曲面的形状,也决定了该曲面上的点与其参数域内的点的一种对应关系。同样地,曲面的参数化不是唯一的。

曲面双参数u,v的变化范围往往取为单位正方形,即u∈[0,1],v∈[0,1]。这样讨论曲面方程时,即简单、方便,又不失一般性。

二、程序示例 Code Example

使用函数Value(u, v)根据参数计算出曲面上的点,将点分u,v方向连成线,可以绘制出曲面的线框模型。程序如下所示:

/*
* Copyright (c) 2013 eryar All Rights Reserved.
*
* File : Main.cpp
* Author : eryar@163.com
* Date : 2013-08-11 10:36
* Version : V1.0
*
* Description : Draw OpenCascade Geometry Surfaces in OpenSceneGraph.
*
*/ // OpenSceneGraph
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <osgGA/StateSetManipulator>
#include <osgViewer/ViewerEventHandlers> #pragma comment(lib, "osgd.lib")
#pragma comment(lib, "osgDBd.lib")
#pragma comment(lib, "osgGAd.lib")
#pragma comment(lib, "osgViewerd.lib") // OpenCascade
#define WNT
#include <TColgp_Array2OfPnt.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColGeom_Array2OfBezierSurface.hxx>
#include <GeomConvert_CompBezierSurfacesToBSplineSurface.hxx> #include <Geom_Surface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_SphericalSurface.hxx> #pragma comment(lib, "TKernel.lib")
#pragma comment(lib, "TKMath.lib")
#pragma comment(lib, "TKG3d.lib")
#pragma comment(lib, "TKGeomBase.lib") // Approximation Delta.
const double APPROXIMATION_DELTA = 0.1; /**
* @breif Build geometry surface.
*/
osg::Node* buildSurface(const Geom_Surface& surface)
{
osg::ref_ptr<osg::Geode> geode = new osg::Geode(); gp_Pnt point;
Standard_Real uFirst = 0.0;
Standard_Real vFirst = 0.0;
Standard_Real uLast = 0.0;
Standard_Real vLast = 0.0; surface.Bounds(uFirst, uLast, vFirst, vLast); Precision::IsNegativeInfinite(uFirst) ? uFirst = -1.0 : uFirst;
Precision::IsInfinite(uLast) ? uLast = 1.0 : uLast; Precision::IsNegativeInfinite(vFirst) ? vFirst = -1.0 : vFirst;
Precision::IsInfinite(vLast) ? vLast = 1.0 : vLast; // Approximation in v direction.
for (Standard_Real u = uFirst; u <= uLast; u += APPROXIMATION_DELTA)
{
osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array(); for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
{
point = surface.Value(u, v); pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
} // Set the colors.
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
linesGeom->setColorArray(colors.get());
linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL); // Set the normal in the same way of color.
osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
linesGeom->setNormalArray(normals.get());
linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL); // Set vertex array.
linesGeom->setVertexArray(pointsVec);
linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, , pointsVec->size())); geode->addDrawable(linesGeom.get());
} // Approximation in u direction.
for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
{
osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array(); for (Standard_Real u = vFirst; u <= uLast; u += APPROXIMATION_DELTA)
{
point = surface.Value(u, v); pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
} // Set the colors.
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
linesGeom->setColorArray(colors.get());
linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL); // Set the normal in the same way of color.
osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
linesGeom->setNormalArray(normals.get());
linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL); // Set vertex array.
linesGeom->setVertexArray(pointsVec);
linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, , pointsVec->size())); geode->addDrawable(linesGeom.get());
} return geode.release();
} /**
* @breif Test geometry surfaces of OpenCascade.
*/
osg::Node* buildScene(void)
{
osg::ref_ptr<osg::Group> root = new osg::Group(); // Test Plane.
Geom_Plane plane(gp::XOY());
root->addChild(buildSurface(plane)); // Test Bezier Surface and B-Spline Surface.
TColgp_Array2OfPnt array1(,,,);
TColgp_Array2OfPnt array2(,,,);
TColgp_Array2OfPnt array3(,,,);
TColgp_Array2OfPnt array4(,,,); array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,)); array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,)); array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,)); array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,)); Geom_BezierSurface BZ1(array1);
Geom_BezierSurface BZ2(array2);
Geom_BezierSurface BZ3(array3);
Geom_BezierSurface BZ4(array4);
root->addChild(buildSurface(BZ1));
root->addChild(buildSurface(BZ2));
root->addChild(buildSurface(BZ3));
root->addChild(buildSurface(BZ4)); Handle_Geom_BezierSurface BS1 = new Geom_BezierSurface(array1);
Handle_Geom_BezierSurface BS2 = new Geom_BezierSurface(array2);
Handle_Geom_BezierSurface BS3 = new Geom_BezierSurface(array3);
Handle_Geom_BezierSurface BS4 = new Geom_BezierSurface(array4);
TColGeom_Array2OfBezierSurface bezierarray(,,,);
bezierarray.SetValue(,,BS1);
bezierarray.SetValue(,,BS2);
bezierarray.SetValue(,,BS3);
bezierarray.SetValue(,,BS4); GeomConvert_CompBezierSurfacesToBSplineSurface BB (bezierarray); if (BB.IsDone())
{
Geom_BSplineSurface BSPLSURF(
BB.Poles()->Array2(),
BB.UKnots()->Array1(),
BB.VKnots()->Array1(),
BB.UMultiplicities()->Array1(),
BB.VMultiplicities()->Array1(),
BB.UDegree(),
BB.VDegree() ); BSPLSURF.Translate(gp_Vec(,,)); root->addChild(buildSurface(BSPLSURF));
} // Test Spherical Surface.
Geom_SphericalSurface sphericalSurface(gp::XOY(), 1.0);
sphericalSurface.Translate(gp_Vec(2.5, 0.0, 0.0));
root->addChild(buildSurface(sphericalSurface)); // Test Conical Surface.
Geom_ConicalSurface conicalSurface(gp::XOY(), M_PI/, 1.0);
conicalSurface.Translate(gp_Vec(5.0, 0.0, 0.0));
root->addChild(buildSurface(conicalSurface)); // Test Cylindrical Surface.
Geom_CylindricalSurface cylindricalSurface(gp::XOY(), 1.0);
cylindricalSurface.Translate(gp_Vec(8.0, 0.0, 0.0));
root->addChild(buildSurface(cylindricalSurface)); // Test Toroidal Surface.
Geom_ToroidalSurface toroidalSurface(gp::XOY(), 1.0, 0.2);
toroidalSurface.Translate(gp_Vec(11.0, 0.0, 0.0));
root->addChild(buildSurface(toroidalSurface)); return root.release();
} int main(int argc, char* argv[])
{
osgViewer::Viewer myViewer; myViewer.setSceneData(buildScene()); myViewer.addEventHandler(new osgGA::StateSetManipulator(myViewer.getCamera()->getOrCreateStateSet()));
myViewer.addEventHandler(new osgViewer::StatsHandler);
myViewer.addEventHandler(new osgViewer::WindowSizeHandler); return myViewer.run();
}

程序效果如下图所示:

Figure 2.1 OpenCascade Geometry Surfaces in OpenSceneGraph

三、结论 Conclusion

根据OpenCascade中的几何曲面的函数Value(u, v)可以计算出曲面上的点。分u方向和v方向分别绘制曲面上的点,并将之连接成线,即可以表示出曲面的线框模型。因为这样的模型没有面的信息,所以不能有光照效果、材质效果等。要有光照、材质的信息,必须将曲面进行三角剖分。相关的剖分算法有Delaunay三角剖分等。

Render OpenCascade Geometry Surfaces in OpenSceneGraph的更多相关文章

  1. Render OpenCascade Geometry Curves in OpenSceneGraph

    在OpenSceneGraph中绘制OpenCascade的曲线 Render OpenCascade Geometry Curves in OpenSceneGraph eryar@163.com ...

  2. OpenCascade Shape Representation in OpenSceneGraph

    OpenCascade Shape Representation in OpenSceneGraph eryar@163.com 摘要Abstract:本文通过程序实例,将OpenCascade中的拓 ...

  3. Opencascade、OpenGL和OpenSceneGraph的区别与联系

    OpenGL只是三维显示 Openscenegraph基于场景图的概念,它提供一个在OpenGL之上的面向对象的框架,从而能把开发者从实现和优化底层图形的调用中解脱出来 Opencascade更适合算 ...

  4. OpenCASCADE Linear Extrusion Surface

    OpenCASCADE Linear Extrusion Surface eryar@163.com Abstract. OpenCASCADE linear extrusion surface is ...

  5. Polynomial Library in OpenCascade

    Polynomial Library in OpenCascade eryar@163.com 摘要Abstract:分析幂基曲线即多项式曲线在OpenCascade中的计算方法,以及利用OpenSc ...

  6. Representation Data in OpenCascade BRep

    Representation Data in OpenCascade BRep eryar@163.com 摘要Abstract:现在的显示器大多数是光栅显示器,即可以看做一个像素的矩阵.在光栅显示器 ...

  7. Open Cascade 转化为OpenSceneGraph中的Mesh

    #include <osgDB/ReadFile> #include <osgViewer/Viewer> #include <osgGA/StateSetManipul ...

  8. OpenCASCADE Data Exchange - 3D PDF

    OpenCASCADE Data Exchange - 3D PDF eryar@163.com Abstract. Today most 3D engineering model data are ...

  9. Visualize Surface by Delaunay Triangulator

    Visualize Surface by Delaunay Triangulator eryar@163.com Abstract. Delaunay Triangulation is the cor ...

随机推荐

  1. Linq学习工具及Lamada表达式

    好东西.转载一个.以备学习 Linq学习工具:     http://www.linqpad.net/ Lamada表达式: Func<int, int, int> IntPow = (x ...

  2. HTML5中id可以用数字开头,但在css中不能正常使用

    昨晚在看<响应式Web设计:html5和css3实战>时,书中提到“HTML5中的ID指可以用数字开头”.这个还真不知道,于是测试了一下,发现了问题. 在H5描述中是这样说的: 在css样 ...

  3. ARCgis已知线裁剪已知面

    经常遇到需要在ArcGIS中,根据已知线图层(要素)切分已知面图层(要素).经过研究,利用topology拓扑菜单中的construct features可以实现.具体如下 现有用线图层A.面图层B, ...

  4. dom解析xml

    <?xml version="1.0" encoding="UTF-8"?><ShowList> <Movie>  < ...

  5. WLAN信道

  6. java分割字符串

    经验分享: 1.分隔符为“.”(无输出),“|”(不能得到正确结果)转义字符时,“*”,“+”时出错抛出异常,都必须在前面加必须得加"\\",如split(\\|); 2.如果用& ...

  7. 用c解决的小题目

    判断计算机的大.小端存储方式 1 int main() { ; char* p=(char*)&a; ) printf("little\n");//小端存储:高位存在地地址 ...

  8. .Net Core开源通讯组件 SmartRoute(服务即集群)

    SmartRoute是基于Dotnet Core设计的可运行在linux和windows下的服务通讯组件,其设计理念是去中心化和零配置即可实现服务通讯集群.SmartRoute是通过消息订阅的机制实现 ...

  9. SqlServer2012 数据库的同步之发布+订阅

    文章参考了百度过的文章,因为版本不同,操作中也遇到了很多问题,现在整理一下,希望对各位朋友有所帮助. 发布订阅份为两个步骤:1.发布.2订阅.首先在数据源数据库服务器上对需要同步的数据进行发布,然后在 ...

  10. javascript 设计模式-----享元模式

    四个轮子,一个方向盘,有刹车,油门,车窗,这些词首先让人联想到的就是一辆汽车.的确,这些都是是一辆车的最基本特征,或者是属性,我们把词语抽象出来,而听到这些词语的人把他们想象陈一辆汽车.在代码里面也是 ...