Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的。

Data Frame每一列有列名,每一行也可以指定行名。如果不指定行名,那么就是从1开始自增的Sequence来标识每一行。

初始化

使用data.frame函数就可以初始化一个Data Frame。比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为:
student<-data.frame(ID=c(,,),Name=c("Devin","Edward","Wenli"),Gender=c("M","M","F"),Birthdate=c("1984-12-29","1983-5-6","1986-8-8”))
另外也可以使用read.table() read.csv()读取一个文本文件,返回的也是一个Data Frame对象。读取数据库也是返回Data Frame对象。
查看student的内容为:
  ID   Name Gender  Birthdate
1  11  Devin      M 1984-12-29
2  12 Edward      M   1983-5-6
3  13  Wenli      F   1986-8-8
这里只指定了列名为ID,Name,Gender和Birthdate,使用names函数可以查看列名,如果要查看行名,需要用到row.names函数。这里我们希望将ID作为行名,那么可以这样写:
row.names(student)<-student$ID
更简单的办法是在初始化date.frame的时候,有参数row.names可以设置行名的向量。

访问元素

与Matrix一样,使用[行Index,列Index]的格式可以访问具体的元素。
比如访问第一行:
student[,]
访问第二列:
使用列的Index或者列名可以选取要访问的哪些列。比如要ID和Name,那么代码为:
idname<-student[:]
或者是
idname<-student[c("ID","Name”)]
如果是只访问某一列,返回的是Vector类型的,那么可以使用[[或者$来访问。比如我们要所有student的Name,代码为:
name<-student[[]] 或者name<-student[[“Name”]] 或者name<-student$Name
使用attach和detach函数可以使得访问列时不需要总是跟着变量名在前面。
比如要打印所有Name,那么可以写成:
attach(student)
print(Name)
detach(student)
还可以换一种简洁一点的写法就是用with函数:
with(student,{
  n<-Name
  print(n)
})
这里的n作用域只在大括号内,如果想在with函数中对全局的变量进行赋值,那么需要使用<<-这样一个运算符。

修改列数据类型

接下来我们查看该对象每列的类型,使用str(student)可以得到如下结果:
'data.frame':3 obs. of  4 variables:
 $ ID       : num  1 2 3
 $ Name     : Factor w/ 3 levels "Devin","Edward",..: 1 2 3
 $ Gender   : Factor w/ 2 levels "F","M": 2 2 1
 $ Birthdate: Factor w/ 3 levels "1983-5-6","1984-12-29",..: 2 1 3
默认情况下,字符串向量都会被自动识别成Factor,也就是说,ID是数字类型,其他的3个列都被定义为Factor类型了。显然这里Name应该是字符串类型,Birthdate应该是Date类型,我们需要对列的数据类型进行更改:
student$Name<-as.character(student$Name)
student$Birthdate<-as.Date(student$Birthdate)
下面我们再运行str(student)看看修改后的结果:
'data.frame':3 obs. of  4 variables:
 $ ID       : num  11 12 13
 $ Name     : chr  "Devin" "Edward" "Wenli"
 $ Gender   : Factor w/ 2 levels "F","M": 2 2 1
 $ Birthdate: Date, format: "1984-12-29" "1983-05-06" "1986-08-08”

添加新列

对于以及存在的student对象,我们希望增加Age列,该列是根据Birthdate算出来的。首先需要知道怎么算年龄。我们可以使用日期函数Sys.Date()获得当前的日期,然后使用format函数获得年份,然后用两个年份相减就是年龄。好像R并没有提供几个能用的日期函数,我们只能使用format函数取出年份部分,然后转换为int类型相减。
student$Age<-as.integer(format(Sys.Date(),"%Y"))-as.integer(format(student$Birthdate,"%Y”))
这样写似乎太长了,我们可以用within函数,这个函数和之前提到过的with函数类似,可以省略变量名,不同的地方是within函数可以在其中修改变量,也就是我们这里增加Age列:
student<-within(student,{
  Age<-as.integer(format(Sys.Date(),"%Y"))-as.integer(format(Birthdate,"%Y"))
})

查询/子集

查询一个Date Frame,返回一个满足条件的子集,这相当于数据库中的表查询,是非常常见的操作。使用行和列的Index来获取子集是最简单的方法,前面已经提到过。如果我们使用布尔向量,配合which函数,可以实现对行的过滤。比如我们要查询所有Gender为F的数据,那么我们首先对student$Gender==“F”,得到一个布尔向量:FALSE FALSE  TRUE,然后使用which函数可以将布尔向量中TRUE的Index返回,所以我们的完整查询语句就是:
student[which(student$Gender=="F"),]
注意这里列Index并没有输入,如果我们只想知道所有女生的年龄,那么可以改为:
student[which(student$Gender=="F"),"Age”]
这样的查询写法还是复杂了点,可以直接使用subset函数,那么查询会简单些,比如我们把查询条件改为年龄<30的女性,查姓名和年龄,那么查询语句为:
subset(student,Gender=="F" & Age< ,select=c("Name","Age"))
使用SQL查询Data Frame
对于我这种使用了多年SQL的人来说,如果能够直接写SQL语句对Data Frame进行查询操作,那是多么方便美妙的啊,结果还真有这么一个包:sqldf。
同样是前面的需求,对应的语句就是:
library(sqldf)
result<-sqldf("select Name,Age from student where Gender='F' and Age<30")

连接/合并

对于数据库来说,对多表进行join查询是一个很正常的事情,那么在R中也可以对多个Data Frame进行连接,这就需要使用merge函数。
比如除了前面申明的student对象外,我们再申明一个score变量,记录了每个学生的科目和成绩:
score<-data.frame(SID=c(,,,,),Course=c("Math","English","Math","Chinese","Math"),Score=c(,,,,))
我们看看该表的内容:
  SID  Course Score
1  11    Math    90
2  11 English    80
3  12    Math    80
4  12 Chinese    95
5  13    Math    96
这里的SID就是Student里面的ID,相当于一个外键,现在要用这个ID进行inner join操作,那么对应的R语句就是:
result<-merge(student,score,by.x="ID",by.y="SID")
我们看看merge以后的结果:
 ID   Name Gender  Birthdate Age  Course Score
1 11  Devin      M 1984-12-29  31    Math    90
2 11  Devin      M 1984-12-29  31 English    80
3 12 Edward      M 1983-05-06  32    Math    80
4 12 Edward      M 1983-05-06  32 Chinese    95
5 13  Wenli      F 1986-08-08  29    Math    96
正如我们期望的一样join在了一起。
除了join,另外一个操作就是union,这也是数据库常用操作,那么在R中如何将两个列一样的Data Frame Union联接在一起呢?虽然R语言中有union函数,但是不是SQL的Union的意思,我们要实现Union功能,需要用到rbind函数。
rbind的两个Data Frame必须有相同的列,比如我们再申明一个student2,将两个变量rbind起来:
student2<-data.frame(ID=c(,),Name=c("Yan","Peng"),Gender=c("F","M"),Birthdate=c("1982-2-9","1983-1-16"),Age=c(,))
rbind(student,student2)

R语言Data Frame数据框常用操作的更多相关文章

  1. 转载:R语言Data Frame数据框常用操作

    Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可 ...

  2. R: data.frame 数据框的:查询位置、排序(sort、order)、筛选满足条件的子集。。

    ################################################### 问题:数据框 data.frame 查.排序等,   18.4.27 怎么对数据框 data.f ...

  3. R语言︱基本函数、统计量、常用操作函数

    先言:R语言常用界面操作 帮助:help(nnet) = ?nnet =??nnet 清除命令框中所有显示内容:Ctrl+L 清除R空间中内存变量:rm(list=ls()).gc() 获取或者设置当 ...

  4. R语言 data.frame 大全

    A data frame is used for storing data tables. It is a list of vectors of equal length. For example, ...

  5. R语言data.table包fread读取数据

    R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数 ...

  6. [译]用R语言做挖掘数据《二》

    数据探索 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: ...

  7. R语言分析朝阳医院数据

    R语言分析朝阳医院数据 本次实践通过分析朝阳医院2016年销售数据,得出“月均消费次数”.“月均消费金额”.“客单价”.“消费趋势”等结果,并据此作出可视化图形. 一.读取数据: library(op ...

  8. byte数据的常用操作函数[转发]

    /// <summary> /// 本类提供了对byte数据的常用操作函数 /// </summary> public class ByteUtil { ','A','B',' ...

  9. R语言实现金融数据的时间序列分析及建模

    R语言实现金融数据的时间序列分析及建模 一 移动平均    移动平均能消除数据中的季节变动和不规则变动.若序列中存在周期变动,则通常以周期为移动平均项数.移动平均法可以通过数据显示出数据长期趋势的变动 ...

随机推荐

  1. 建立MySQL的ODBC

    1. 进入控制面板->管理工具->数据源(ODBC): 2. 点击添加,数据源驱动程序选择MySQL ODBC 5.1 Driver: 3. 弹出MySQL Connecotor/ODBC ...

  2. PHP高效率写法

    1.尽量静态化: 如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍.当然了,这个测试方法需要在十万级以上次执行,效果才明显.其实静态方法和非静态方法的效率 ...

  3. Scalaz(30)- Free :Natural Tranformation ~> - map higher kinded types for free

    当我们需要定义一些对应高阶类型进行相互类型转换的操作函数时,我们发现scala语言并不提供能定义这种函数的支持.举例来说:如果我们希望定义一个函数把对于任何T值的Option[T]转换成List[T] ...

  4. jQUery操作checkbox

    1 2 3 <script src="http://code.jquery.com/jquery-1.8.3.min.js"></script> <s ...

  5. 解决WindowsServer 2008 R2 未注册版一个小时自动强制关机

    仅用来学习交流,请大家购买正版,尊重正版版权. 安装了win2008R2,试了很多激活方法,终于激活后,不知道什么原因,过了一段时间后,每隔一段时间就自动关机,查了一下,发现是 wlms.exe在作祟 ...

  6. 通过rsync+inotify实现数据实时备份同步

    一.环境描述 测试环境 需求:服务器A与服务器B为主备服务模式,需要保持文件一致性,现采用sersync基于rsync+inotify实现数据实时同步 环境描述: 主服务器172.26.7.50 ,从 ...

  7. 当子查询碰上NULL

    情景: 现在有如图两个表,boy和girl,对应着Boy和Girl两个bean,有共同字段id.name,另外boy还有个外键grilfriend(指向girl的id) 现在要查询所有的Boy,如果有 ...

  8. Quartz.NET开源作业调度框架系列(一):快速入门step by step

    Quartz.NET是一个被广泛使用的开源作业调度框架 , 由于是用C#语言创建,可方便的用于winform和asp.net应用程序中.Quartz.NET提供了巨大的灵活性但又兼具简单性.开发人员可 ...

  9. css对齐

    2016-10-25 <css入门经典>第15章 1.text-align属性: 块属性内部的文本对齐方式.该属性只对块盒子有意义,内联盒子的内容没有对齐方式.(注意:只是盒子内部的内容对 ...

  10. go语言 类型:整型

    整型是所有编程语言里最基础的数据类型.