北大poj-1091
跳蚤
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 9591 | Accepted: 2892 |
Description
比如当N=2,M=18时,持有卡片(10, 15,
18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持
有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。
Input
Output
Sample Input
2 4
Sample Output
12
Hint
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)
Source
给你两个正整数n,m,让你求长度为n+1的满足条件的一个等式:a[1]*x1+a[2]*x2+a[3]*x3+...+a[n]*xn+a[n+1]*x(n+1)=1 (0<=a[i]<=m&&a[n+1]=m)
让你求一共有多少种情况满足这个条件。
要使得 a[1]*x1+a[2]*x2+a[3]*x3+...+a[n]*xn+a[n+1]*m=1 (0<=a[i]<=m),那么a[1],a[2],a[3]....a[n+1]的最大公约数为1.
要解决此题,你需要知道的知识有扩展欧几里得,鸽巢原理,以及递归求所有的排列组合。
许多博客都举了这么一个例子:
例如:n=2,m=360
360=3^2*2^3*5 所有不满足条件的数列,最大公约数是360质因子的乘积,只要将这些组合去掉,就是要求的答案(不懂的慢慢揣摩)
那么就要先求出m的所有质因子,然后求出总的排列组合的个数,即题目中说的M^N,最后根据鸽巢原理求得最后答案。
公式为:ans=M^N-(有奇数个公因数的n元组)+(有偶数个公因数的n元组)。拿上面的例子来说就是
ans=m^n-( 有公因数2的n元组)- (有公因数3的n元组)- (有公因数5的n元组)+ (有公因数2,3的n元组) +(有公因数2,5的n元组)+ (有公因数3,5的n元组)- (有公因数2,3,5的n元组).
有公因数d的n元组,每个位置上有 (m/d)个选择(1 ~ m里面有m/d个d的倍数),根据乘法原理,可以得出有公因数d的n元组有 (m/d)^n 个.
//容斥原理 + 欧几里得原理
#include<stdio.h> #define M 100000 long long factors[M],reorder[M];
long long n,m,factorNum,per; void factoring()//分解质因子,存在factors里面
{
factorNum=;
long long max=m;
int i = ;
for(i=;i*i<=max;i++)
{
if(max%i==)factors[factorNum++]=i;
while(max%i==)max/=i;
}
if(max!=)factors[factorNum++]=max;
} long long power(long long base, long long index)//求x^y
{
long long k=base;
long long i = ;
for(i=; i<index; i++)
base*=k;
return base;
} void dfs(long long start,long long pos,long long FactorNum4Reorder)
{
long long i = ;
if(pos==FactorNum4Reorder)
{
long long t=m;
for(i=; i<FactorNum4Reorder; i++)
{
t/=reorder[i];//t表示每位上有几个包含质因子的数
}
per+=power(t,n);//总共有多少个
}
else
{
for(i=start; i<factorNum; i++)//递归回溯求解所有排列组合
{
reorder[pos]=factors[i];
dfs(i+,pos+,FactorNum4Reorder);
}
}
} int main()
{
long long i = ;
while(scanf("%I64d%I64d",&n,&m)!=EOF)
{
factoring();
long long ans=power(m,n);
for(i=; i<=factorNum; i++)
{
per=;
dfs(,,i);
if(i%)ans-=per;//如果有奇数个公因数的n元组就相减
else ans+=per;//如果有奇数个公因数的n元组就相加
}
printf("%I64d\n",ans);
}
return ;
}
北大poj-1091的更多相关文章
- 北大POJ题库使用指南
原文地址:北大POJ题库使用指南 北大ACM题分类主流算法: 1.搜索 //回溯 2.DP(动态规划)//记忆化搜索 3.贪心 4.图论 //最短路径.最小生成树.网络流 5.数论 //组合数学(排列 ...
- poj 1091 跳蚤
跳蚤 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8482 Accepted: 2514 Description Z城 ...
- POJ 1091 跳蚤 容斥原理
分析:其实就是看能否有一组解x1,x2, x3, x4....xn+1,使得sum{xi*ai} = 1,也就是只要有任意一个集合{ai1,ai2,ai3, ...aik|gcd(ai1, ai2, ...
- poj 1091 跳骚
/** 题意: 求对于小于m的n个数, 求x1*a1 + x2*a2+x3*a3........+xn*an = 1 即求 a1,a2,a3,....an 的最大公约数为1 , a1,a2....an ...
- POJ 1091
这题确实是好. 其实是求x1*a1+x2*a2+....M*xn+1=1有解的条件.很明显,就是(a1,a2,...M)=1了.然后,可以想象,直接求有多少种,很难,所以,求出选择哪些数一起会不与M互 ...
- 【Java】深深跪了,OJ题目Java与C运行效率对比(附带清华北大OJ内存计算的对比)
看了园友的评论之后,我也好奇清橙OJ是怎么计算内存占用的.重新测试的情况附在原文后边. -------------------------------------- 这是切割线 ----------- ...
- POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14021 Accepted: 5484 Specia ...
- 各大OJ
北大POJ 杭电HDU 浙大ZOj 蓝桥杯 PAT
- [原]携程预选赛A题-聪明的猴子-GCD+DP
题目: 聪明的猴子 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- leetcode学习笔记--开篇
1 LeetCode是什么? LeetCode是一个在线的编程测试平台,国内也有类似的Online Judge平台.程序开发人员可以通过在线刷题,提高对于算法和数据结构的理解能力,夯实自己的编程基础. ...
随机推荐
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- node.js基础 1之 HTTP事件回调进阶(HTTP模块)
HTTP概念进阶 1. 什么是回调? 回调是异步编程时的基础,将后续逻辑封装成起始函数的参数,逐层嵌套 2. 什么是同步/异步? 同步是指:发送方发出数据后,等接收方发回响应以后才发下一个数据包的通讯 ...
- frame里的链接跳转
<a href="javascript:parent.location='index_frame.html';void(0);">索引</a> <a ...
- SASS的安装及使用(前提:安装Ruby)
本文仅适用于Windows系统. 一.安装Ruby Sass是用Ruby语言写的,但是两者的语法没有关系,所以学 Sass 不用学 Ruby,只是必须先安装Ruby,然后再安装Sass. Linux和 ...
- nodejs 服务端添加相应头Access-Control-Allow-Origin
重点在这句:res.setHeader("Access-Control-Allow-Origin", "*"); var http = require(&quo ...
- redhat自定义安装必选
redhat自定义安装必选 1.桌面 ked桌面 x 窗口系统 2.应用程序 编辑器 基于文本的互联网 图形互联网 3.服务器 服务器配置工具 万维网服务器 Windows文件 FTP服务器
- java的前台与后台
技术上:前台是指web展示,webservice接口等输入输出接口,后台是指支持这些接口的程序. 例如读写数据库,读写文件,业务逻辑处理. 业务上来讲:前台是提供给最终用户使用的界面,后台是指管理使用 ...
- MySql学习(二) —— where / having / group by / order by / limit 简单查询
注:该MySql系列博客仅为个人学习笔记. 这篇博客主要记录sql的五种子句查询语法! 一个重要的概念:将字段当做变量看,无论是条件,还是函数,或者查出来的字段. select五种子句 where 条 ...
- css3 transfrom变换
Transform 转换 CSS3中的转换允许我们对元素进行旋转.缩放.移动或倾斜,它分为2D转换 或3D转换 在CSS2时代,如果要做一些图片转换角度,都依赖于图片.flash或JavaScript ...
- 网站优化之PHPCMS如何开启伪静态
做为一名网站优化方面的工作,那么选择CMS系统的时候,有良好的网站优化功能就是一个好的CMS的标准之一,而系统是否支持伪静态,则是URL优化的工作之一,而PHPCMS是一款网站优化方面做得比较成功的C ...