4.4 R1 In which of the following problems is Case/Control Sampling LEAST likely to make a positive impact?

A. Predicting a shopper's gender based on the products they buy

B. Finding predictors for a certain type of cancer

C. Predicting if an email is Spam or Not Spam

Correct answer: A

Explanation: Case/Control sampling is most effective when the prior probabilities of the classes are very unequal. We expect this to be the case for the cancer and spam problems, but not the gender problem.

4.5 R1 Suppose that in Ad Clicks (a problem where you try to model if a user will click on a particular ad) it is well known that the majority of the time an ad is shown it will not be clicked. What is another way of saying that?

A. Ad Clicks have a low Prior Probability.

B. Ad Clicks have a high Prior Probability.

C. Ad Clicks have a low Density.

D. Ad Clicks have a high Density.

Correct answer: A

Explanation: Whether or not an ad gets clicked is a Qualitative Variable. Thus, it does not have a density. The Prior Probability of Ad Clicks is low because most ads are not clicked.

4.6 R1 Which of the following is NOT a linear function in x:

A. f(x) = a + b^2x

B. The discriminant function from LDA.

C. \delta_k(x) = x\frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} +\log(\pi_k)

D. \text{logit}(P(y = 1 | x)) where P(y = 1 | x) is as in logistic regression

E. P(y = 1 | x) from logistic regression

Correct answer: E Explanation: P(y = 1 | x) from logistic regression is not linear because it involves both an exponential function of x and a ratio.

5.1 R2 What are reasons why test error could be LESS than training error?

A. By chance, the test set has easier cases than the training set.

B. The model is highly complex, so training error systematically overestimates test error.

C. The model is not very complex, so training error systematically overestimates test error.

Correct answer: A

Explanation: Training error usually UNDERestimates test error when the model is very complex (compared to the training set size), and is a pretty good estimate when the model is not very complex. However, it's always possible we just get too few hard-to-predict points in the test set, or too many in the training set.

---恢复内容结束---

斯坦福公开课:Statistical Learning中做错的选择题的更多相关文章

  1. 斯坦福公开课:Developing IOS 8 App with Swift(1-3)心得体会

    最近开始学习Swift开发移动程序.跟随斯坦福大学的公开课进行自学. 这真是一个美好的时代,虽然不能在斯坦福求学,但是可以观看录制的授课录像.讲义,好似老师在给我们上课一样! 心得: 1.每节课信息量 ...

  2. swift-计算器(斯坦福公开课)

    看了斯坦福老头的课,真心觉得,我的中文怎么也变的这么垃圾了.是关于iOS8的课程,用swift写的,一个计算器应用的制作,看看人家的课,再看看咱们学校的课(不过垃圾学校,纯粹觉得大学浪费了),废话啊, ...

  3. 关于ios8斯坦福公开课第二课

    在这个课程中,我们遇到了这样的代码 @IBAction func oprate(sender: UIButton) { let opration = sender.currentTitle! if u ...

  4. iOS菜鸟成长笔记(3)——斯坦福公开课学习(1)

    一.iOS四层结构 1.Core OS 是用FreeBSD和Mach所改写的Darwin, 是开源.符合POSIX标准的一个Unix核心.这一层包含或者说是提供了整个iPhone OS的一些基础功能, ...

  5. Python练习题中做错题目

    1,一下代码执行的结果为 a = b = "julyedu.com" a = 'AI 教育' print(b) 答案: julyedu.com 要点: 在python中, 不可变对 ...

  6. 一个机器学习博客 ,包括 Standford公开课machine learning

    http://blog.csdn.net/abcjennifer/article/category/1173803/4 http://blog.csdn.net/abcjennifer/article ...

  7. c++中的运算符重载operator1(翁恺c++公开课[30]学习笔记)

    运算符重载规则: 只有已经存在的运算符才能被重载,不能自己制造一个c++中没有的运算符进行重载 重载可以在类或枚举类型内进行,也可以是全局函数,但int.float这种已有的类型内是不被允许的 不能二 ...

  8. static在c\c++中的作用(翁恺c++公开课[28-29]学习笔记)

    static相对来说是一个较复杂的修饰符,c++中的static在c的基础之上又包含了static在类中的应用(也就是说多了static的成员变量和static的成员函数):c\c++中静态变量.对象 ...

  9. c++中的Exceptions异常处理(翁恺c++公开课[36])

    Exceptions用于处理Run-time Error: //文件读取的异常捕获伪代码 try{ open the file; determine its size; allocate that m ...

随机推荐

  1. Jquery / js 判断数据类型方法(限制文本框类型输入)

    当想要判断文本框中的值是否为自己想要的类型时,可以通过一些方法作出判断,这里对于光标离开文本框时判断文本框中输入的是否是数值类型,如果不是,做出提示 $("#WORKYEARS") ...

  2. error-2015-9-9

    类型的建键部分无效,该键的所有部分均不可为null 映射从第行开始的片段时有问题 表的键具有潜在运行时冲突 列映射到概念端的属性 但是它们未形成entitySet的键属性 报错: 未能加载文件或程序集 ...

  3. angularjs(一)基础概念

    一.前言 前端技术的发展是如此之快,各种优秀技术.优秀框架的出现简直让人目不暇接,作为一名业界新秀,紧跟时代潮流,学习掌握新知识自然是不敢怠慢.当听到AngularJs这个名字并知道是google在维 ...

  4. css3、html5学习笔记

    2016/12/14 ----认真看完绝对对你有帮助 HTML5针对移动端,移动端的浏览器主要是chrome,是webkit内核; app(applicatin):应用; native app:原生的 ...

  5. Java垃圾回收机制 入门

    对于Java虚拟机的了解,我认为是一个Java程序员已经入门的重要标志,而JVM中的垃圾回收机制(Garbage Collection,简称GC)又是JVM中的重点,所以hans在这里用篇文章时间和大 ...

  6. Regex

    1. regex with variable example: find the number and put a parenthese around the number. output: a(52 ...

  7. java的Iterator源码浅析

    在java的集合中,List接口继承Collection接口,AbstractList类实现了List接口,在AbstractList中的内部类Itr实现了Iterator接口 ArrayList实现 ...

  8. 如何:对 Windows 窗体控件进行线程安全调用

    http://msdn.microsoft.com/zh-cn/library/ms171728(VS.90).aspx http://msdn.microsoft.com/zh-cn/library ...

  9. SVM学习笔记(二):什么是交叉验证

    交叉验证:拟合的好,同时预测也要准确 我们以K折交叉验证(k-folded cross validation)来说明它的具体步骤.{A1,A2,A3,A4,A5,A6,A7,A8,A9} 为了简化,取 ...

  10. TCP的拥塞控制

    1.引言 计算机网络中的带宽.交换结点中的缓存和处理机等,都是网络的资源.在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏.这种情况就叫做拥塞. 拥塞控制就是防止 ...