应用matplotlib绘制地图
#!/usr/bin/env python
# -*- coding: utf-8 -*- from math import sqrt import shapefile
from matplotlib import pyplot
from descartes import PolygonPatch
from shapely.geometry import Polygon, LineString, Point # used to import dictionary data to shapely
from shapely.geometry import asShape
from shapely.geometry import mapping # calculate the size of our matplotlib output
GM = (sqrt(5) - 1.0) / 2.0
W = 8.0
H = W * GM
SIZE = (W, H) # colors for our plots as hex
GRAY = '#00b700'
BLUE = '#6699cc'
YELLOW = '#ffe680' # functions slightly modified from Sean Gilles http://toblerity.org/shapely/
# used for drawing our results using matplotlib def plot_coords_line(axis, object, color='#00b700'):
x, y = object.xy
ax.plot(x, y, 'o', color=color, zorder=1) def plot_coords_lines(axis, object, color='#999999'):
for linestring in object:
x, y = linestring.xy
ax.plot(x, y, 'o', color=color, zorder=2) def plot_line(axis, object, color='#00b700'):
x, y = object.xy
ax.plot(x, y, color=color, linewidth=3, zorder=1) def plot_lines(axis, object, color='#00b700'):
for line in object:
x, y = line.xy
ax.plot(x, y, color=color, alpha=0.4, linewidth=1, solid_capstyle='round', zorder=2) def set_plot_bounds(object, offset=1.0):
"""
Creates the limits for x and y axis plot :param object: input shapely geometry
:param offset: amount of space around edge of features
:return: dictionary of x-range and y-range values for
"""
bounds = object.bounds
x_min = bounds[0]
y_min = bounds[1]
x_max = bounds[2]
y_max = bounds[3]
x_range = [x_min - offset, x_max + offset]
y_range = [y_min - offset, y_max + offset] return {'xrange': x_range, 'yrange': y_range} # open roads Shapefile that we want to clip with pyshp
roads_london = shapefile.Reader(r"../geodata/roads_london_3857.shp") # open circle polygon with pyshp
clip_area = shapefile.Reader(r"../geodata/clip_area_3857.shp") # access the geometry of the clip area circle
clip_feature = clip_area.shape() # convert pyshp object to shapely
clip_shply = asShape(clip_feature) # create a list of all roads features and attributes
roads_features = roads_london.shapeRecords() # variables to hold new geometry
roads_clip_list = []
roads_shply = [] # run through each geometry, convert to shapely geom and intersect
for feature in roads_features:
roads_london_shply = asShape(feature.shape.__geo_interface__)
roads_shply.append(roads_london_shply)
roads_intersect = roads_london_shply.intersection(clip_shply) # only export linestrings, shapely also created points
if roads_intersect.geom_type == "LineString":
roads_clip_list.append(roads_intersect) # open writer to write our new shapefile too
pyshp_writer = shapefile.Writer() # create new field
pyshp_writer.field("name") # convert our shapely geometry back to pyshp, record for record
for feature in roads_clip_list:
geojson = mapping(feature) # create empty pyshp shape
record = shapefile._Shape() # shapeType 3 is linestring
record.shapeType = 3
record.points = geojson["coordinates"]
record.parts = [0] pyshp_writer._shapes.append(record)
# add a list of attributes to go along with the shape
pyshp_writer.record(["empty record"]) # save to disk
pyshp_writer.save(r"../geodata/roads_clipped.shp") # setup matplotlib figure that will display the results
fig = pyplot.figure(1, figsize=SIZE, dpi=90, facecolor="white") # add a little more space around subplots
fig.subplots_adjust(hspace=.5) # ###################################
# first plot
# display sample line and circle
# ################################### # first figure upper left drawing
# 222 represents the number_rows, num_cols, subplot number
ax = fig.add_subplot(221) # our demonstration geometries to see the details
line = LineString([(0, 1), (3, 1), (0, 0)])
polygon = Polygon(Point(1.5, 1).buffer(1)) # use of descartes to create polygon in matplotlib
# input circle and color fill and outline in blue with transparancy
patch1 = PolygonPatch(polygon, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1) # add circle to axis in figure
ax.add_patch(patch1) # add line using our function above
plot_line(ax, line) # draw the line nodes using our function
plot_coords_line(ax, line) # subplot title text
ax.set_title('Input line and circle') # define axis ranges as list [x-min, x-max]
# added 1.5 units around object so not touching the sides
x_range = [polygon.bounds[0] - 1.5, polygon.bounds[2] + 1.5] # y-range [y-min, y-max]
y_range = [polygon.bounds[1] - 1.0, polygon.bounds[3] + 1.0] # set the x and y axis limits
ax.set_xlim(x_range)
ax.set_ylim(y_range) # assing the aspect ratio
ax.set_aspect(1) # ##########################################
# second plot
# display original input circle and roads
# ########################################## ax = fig.add_subplot(222) # draw our original input road lines and circle
plot_lines(ax, roads_shply, color='#3C3F41') patch2 = PolygonPatch(clip_shply, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1)
ax.add_patch(patch2) # write title of second plot
ax.set_title('Input roads and circle') # define the area that plot will fit into plus 600m space around
x_range = set_plot_bounds(clip_shply, 600)['xrange']
y_range = set_plot_bounds(clip_shply, 600)['yrange'] ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
ax.set_aspect(1) # remove the x,y axis labels by setting empty list
ax.set_xticklabels([])
ax.set_yticklabels([]) # ###################################
# third plot
# display sample intersection
# ################################### ax = fig.add_subplot(223) patch2 = PolygonPatch(polygon, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1)
ax.add_patch(patch2) # run the intersection detail view
intersect_line = line.intersection(polygon) # plot the lines and the line vertex to plot
plot_lines(ax, intersect_line, color='#3C3F41')
plot_coords_lines(ax, intersect_line, color='#3C3F41') # write title of second plot
ax.set_title('Line intersects circle') # define the area that plot will fit into
x_range = set_plot_bounds(polygon, 1.5)['xrange']
y_range = set_plot_bounds(polygon, 1)['yrange'] ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
ax.set_aspect(1) # ###################################
# fourth plot
# showing results of clipped roads
# ################################### ax = fig.add_subplot(224) # plot the lines and the line vertex to plot
plot_lines(ax, roads_clip_list, color='#3C3F41') # write title of second plot
ax.set_title('Roads intersect circle') # define the area that plot will fit into
x_range = set_plot_bounds(clip_shply, 200)['xrange']
y_range = set_plot_bounds(clip_shply, 200)['yrange'] ax.set_xlim(x_range)
ax.set_ylim(y_range)
ax.set_aspect(1) # remove the x,y axis labels by setting empty list
ax.set_xticklabels([])
ax.set_yticklabels([]) # draw the plots to the screen
pyplot.show()

应用matplotlib绘制地图的更多相关文章
- matplotlib绘制动画
matplotlib从1.1.0版本以后就开始支持绘制动画,具体使用可以参考官方帮助文档.下面是一个很基本的例子: """ A simple example of an ...
- 用Matplotlib绘制二维图像
唠叨几句: 近期在做数据分析,需要对数据做可视化处理,也就是画图,一般是用Matlib来做,但Matlib安装文件太大,不太想直接用它,据说其代码运行效率也很低,在网上看到可以先用Java做数据处理, ...
- 使用ArcGIS API for Silverlight + Visifire绘制地图统计图
原文:使用ArcGIS API for Silverlight + Visifire绘制地图统计图 最近把很久之前做的统计图又拿出来重新做了一遍,感觉很多时候不复习,不记录就真的忘了,时间是最好的稀释 ...
- Python学习(一) —— matplotlib绘制三维轨迹图
在研究SLAM时常常需要对其输出的位姿进行复现以检测算法效果,在ubuntu系统中使用Python可以很好的完成相关的工作. 一. Ubuntu下Python的使用 在Ubuntu下使用Python有 ...
- python使用matplotlib绘制折线图教程
Matplotlib是一个Python工具箱,用于科学计算的数据可视化.借助它,Python可以绘制如Matlab和Octave多种多样的数据图形.下面这篇文章主要介绍了python使用matplot ...
- 使用matplotlib绘制多个图形单独显示
使用matplotlib绘制多个图形单独显示 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspa ...
- 用matplotlib绘制每次交易的盈亏三角形
用matplotlib绘制每次交易的盈亏三角形 结果: 代码: python def plot_trade_triangle(self): # plot each trade as a trade-t ...
- 使用EXCEL绘制三维地图(超简单的五分钟绘制地图方法,妈妈再也不用担心我不会画地图啦~)
博主为从区域规划转行地图学的小学渣一枚,最近处理数据希望对结果进行三维可视化,意外发现从小用到大的EXCEL可以绘制地图且功能非常强大,在这里做一下简单介绍,希望可以给看官提供些许帮助.那下面就开始吧 ...
- Python——使用matplotlib绘制柱状图
Python——使用matplotlib绘制柱状图 1.基本柱状图 首先要安装matplotlib(http://matplotlib.org/api/pyplot_api.htm ...
随机推荐
- 理解 angular2 基础概念和结构 ----angular2系列(二)
前言: angular2官方将框架按以下结构划分: Module Component Template Metadata Data Binding Directive Service Dependen ...
- 常用mysql数据库引擎——MyISAM和InnoDB区别
背景: 昨天做项目时,发现使用事务后回滚不了,后来把数据库引擎从MyISAM换成InnoDB后果断好了,如下图: 正文: MyISAM和InnoDB是mysql常用的数据库引擎,他们的区别如下: 数据 ...
- jQuery.queue源码分析
作者:禅楼望月(http://www.cnblogs.com/yaoyinglong ) 队列是一种特殊的线性表,它的特殊之处在于他只允许在头部进行删除,在尾部进行插入.常用来表示先进先出的操作(FI ...
- REST vs SOAP
REST vs SOAP These information searched from internet most from stackoverflow. Simple explanation ab ...
- 【原创】Django-ORM进阶
基础部分已经写完:[原创]Django-ORM基础 以下部分将对表与表之间的关联操作做以介绍 models.py #_*_coding:utf-8_*_ from django.db import m ...
- IOS开发技巧快速生成二维码
随着移动互联网的发展,二维码应用非常普遍,各大商场,饭店,水果店 基本都有二维码的身影,那么ios中怎么生成二维码呢? 下面的的程序演示了快速生成二维码的方法: 在ios里面要生成二维码,需要借助一个 ...
- 【Swift学习】Swift编程之旅---函数(十)
函数是一组用于执行特定任务的独立的代码段,你用一个名字来标识函数,这个名字是用来“调用”函数来执行它的任务. swift统一函数的语法具有足够的灵活性来表达任何一个简单的不带参数的名称与本地和外部的每 ...
- 利用getBoundingClientRect方法实现简洁的sticky组件
补充于2016-03-20: 本文实现有不足,不完美的地方,请在了解本文相关内容后,移步阅读<sticky组件的改进实现>了解更佳的实现. sticky组件,通常应用于导航条或者工具栏,当 ...
- C#基础01
ASP.net基础详情 1:Momo就是跨平台的一种.net,借助其Momo可以让其.net网站跑到Lumin和安卓机上面. 2:开发的网站具有安全,速度快,容易配置. 3:互联网开发[网站]和管理系 ...
- .NET Core配置文件加载与DI注入配置数据
.NET Core配置文件 在以前.NET中配置文件都是以App.config / Web.config等XML格式的配置文件,而.NET Core中建议使用以JSON为格式的配置文件,因为使用起来更 ...