应用matplotlib绘制地图
#!/usr/bin/env python
# -*- coding: utf-8 -*- from math import sqrt import shapefile
from matplotlib import pyplot
from descartes import PolygonPatch
from shapely.geometry import Polygon, LineString, Point # used to import dictionary data to shapely
from shapely.geometry import asShape
from shapely.geometry import mapping # calculate the size of our matplotlib output
GM = (sqrt(5) - 1.0) / 2.0
W = 8.0
H = W * GM
SIZE = (W, H) # colors for our plots as hex
GRAY = '#00b700'
BLUE = '#6699cc'
YELLOW = '#ffe680' # functions slightly modified from Sean Gilles http://toblerity.org/shapely/
# used for drawing our results using matplotlib def plot_coords_line(axis, object, color='#00b700'):
x, y = object.xy
ax.plot(x, y, 'o', color=color, zorder=1) def plot_coords_lines(axis, object, color='#999999'):
for linestring in object:
x, y = linestring.xy
ax.plot(x, y, 'o', color=color, zorder=2) def plot_line(axis, object, color='#00b700'):
x, y = object.xy
ax.plot(x, y, color=color, linewidth=3, zorder=1) def plot_lines(axis, object, color='#00b700'):
for line in object:
x, y = line.xy
ax.plot(x, y, color=color, alpha=0.4, linewidth=1, solid_capstyle='round', zorder=2) def set_plot_bounds(object, offset=1.0):
"""
Creates the limits for x and y axis plot :param object: input shapely geometry
:param offset: amount of space around edge of features
:return: dictionary of x-range and y-range values for
"""
bounds = object.bounds
x_min = bounds[0]
y_min = bounds[1]
x_max = bounds[2]
y_max = bounds[3]
x_range = [x_min - offset, x_max + offset]
y_range = [y_min - offset, y_max + offset] return {'xrange': x_range, 'yrange': y_range} # open roads Shapefile that we want to clip with pyshp
roads_london = shapefile.Reader(r"../geodata/roads_london_3857.shp") # open circle polygon with pyshp
clip_area = shapefile.Reader(r"../geodata/clip_area_3857.shp") # access the geometry of the clip area circle
clip_feature = clip_area.shape() # convert pyshp object to shapely
clip_shply = asShape(clip_feature) # create a list of all roads features and attributes
roads_features = roads_london.shapeRecords() # variables to hold new geometry
roads_clip_list = []
roads_shply = [] # run through each geometry, convert to shapely geom and intersect
for feature in roads_features:
roads_london_shply = asShape(feature.shape.__geo_interface__)
roads_shply.append(roads_london_shply)
roads_intersect = roads_london_shply.intersection(clip_shply) # only export linestrings, shapely also created points
if roads_intersect.geom_type == "LineString":
roads_clip_list.append(roads_intersect) # open writer to write our new shapefile too
pyshp_writer = shapefile.Writer() # create new field
pyshp_writer.field("name") # convert our shapely geometry back to pyshp, record for record
for feature in roads_clip_list:
geojson = mapping(feature) # create empty pyshp shape
record = shapefile._Shape() # shapeType 3 is linestring
record.shapeType = 3
record.points = geojson["coordinates"]
record.parts = [0] pyshp_writer._shapes.append(record)
# add a list of attributes to go along with the shape
pyshp_writer.record(["empty record"]) # save to disk
pyshp_writer.save(r"../geodata/roads_clipped.shp") # setup matplotlib figure that will display the results
fig = pyplot.figure(1, figsize=SIZE, dpi=90, facecolor="white") # add a little more space around subplots
fig.subplots_adjust(hspace=.5) # ###################################
# first plot
# display sample line and circle
# ################################### # first figure upper left drawing
# 222 represents the number_rows, num_cols, subplot number
ax = fig.add_subplot(221) # our demonstration geometries to see the details
line = LineString([(0, 1), (3, 1), (0, 0)])
polygon = Polygon(Point(1.5, 1).buffer(1)) # use of descartes to create polygon in matplotlib
# input circle and color fill and outline in blue with transparancy
patch1 = PolygonPatch(polygon, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1) # add circle to axis in figure
ax.add_patch(patch1) # add line using our function above
plot_line(ax, line) # draw the line nodes using our function
plot_coords_line(ax, line) # subplot title text
ax.set_title('Input line and circle') # define axis ranges as list [x-min, x-max]
# added 1.5 units around object so not touching the sides
x_range = [polygon.bounds[0] - 1.5, polygon.bounds[2] + 1.5] # y-range [y-min, y-max]
y_range = [polygon.bounds[1] - 1.0, polygon.bounds[3] + 1.0] # set the x and y axis limits
ax.set_xlim(x_range)
ax.set_ylim(y_range) # assing the aspect ratio
ax.set_aspect(1) # ##########################################
# second plot
# display original input circle and roads
# ########################################## ax = fig.add_subplot(222) # draw our original input road lines and circle
plot_lines(ax, roads_shply, color='#3C3F41') patch2 = PolygonPatch(clip_shply, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1)
ax.add_patch(patch2) # write title of second plot
ax.set_title('Input roads and circle') # define the area that plot will fit into plus 600m space around
x_range = set_plot_bounds(clip_shply, 600)['xrange']
y_range = set_plot_bounds(clip_shply, 600)['yrange'] ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
ax.set_aspect(1) # remove the x,y axis labels by setting empty list
ax.set_xticklabels([])
ax.set_yticklabels([]) # ###################################
# third plot
# display sample intersection
# ################################### ax = fig.add_subplot(223) patch2 = PolygonPatch(polygon, fc=BLUE, ec=BLUE, alpha=0.5, zorder=1)
ax.add_patch(patch2) # run the intersection detail view
intersect_line = line.intersection(polygon) # plot the lines and the line vertex to plot
plot_lines(ax, intersect_line, color='#3C3F41')
plot_coords_lines(ax, intersect_line, color='#3C3F41') # write title of second plot
ax.set_title('Line intersects circle') # define the area that plot will fit into
x_range = set_plot_bounds(polygon, 1.5)['xrange']
y_range = set_plot_bounds(polygon, 1)['yrange'] ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
ax.set_aspect(1) # ###################################
# fourth plot
# showing results of clipped roads
# ################################### ax = fig.add_subplot(224) # plot the lines and the line vertex to plot
plot_lines(ax, roads_clip_list, color='#3C3F41') # write title of second plot
ax.set_title('Roads intersect circle') # define the area that plot will fit into
x_range = set_plot_bounds(clip_shply, 200)['xrange']
y_range = set_plot_bounds(clip_shply, 200)['yrange'] ax.set_xlim(x_range)
ax.set_ylim(y_range)
ax.set_aspect(1) # remove the x,y axis labels by setting empty list
ax.set_xticklabels([])
ax.set_yticklabels([]) # draw the plots to the screen
pyplot.show()

应用matplotlib绘制地图的更多相关文章
- matplotlib绘制动画
matplotlib从1.1.0版本以后就开始支持绘制动画,具体使用可以参考官方帮助文档.下面是一个很基本的例子: """ A simple example of an ...
- 用Matplotlib绘制二维图像
唠叨几句: 近期在做数据分析,需要对数据做可视化处理,也就是画图,一般是用Matlib来做,但Matlib安装文件太大,不太想直接用它,据说其代码运行效率也很低,在网上看到可以先用Java做数据处理, ...
- 使用ArcGIS API for Silverlight + Visifire绘制地图统计图
原文:使用ArcGIS API for Silverlight + Visifire绘制地图统计图 最近把很久之前做的统计图又拿出来重新做了一遍,感觉很多时候不复习,不记录就真的忘了,时间是最好的稀释 ...
- Python学习(一) —— matplotlib绘制三维轨迹图
在研究SLAM时常常需要对其输出的位姿进行复现以检测算法效果,在ubuntu系统中使用Python可以很好的完成相关的工作. 一. Ubuntu下Python的使用 在Ubuntu下使用Python有 ...
- python使用matplotlib绘制折线图教程
Matplotlib是一个Python工具箱,用于科学计算的数据可视化.借助它,Python可以绘制如Matlab和Octave多种多样的数据图形.下面这篇文章主要介绍了python使用matplot ...
- 使用matplotlib绘制多个图形单独显示
使用matplotlib绘制多个图形单独显示 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspa ...
- 用matplotlib绘制每次交易的盈亏三角形
用matplotlib绘制每次交易的盈亏三角形 结果: 代码: python def plot_trade_triangle(self): # plot each trade as a trade-t ...
- 使用EXCEL绘制三维地图(超简单的五分钟绘制地图方法,妈妈再也不用担心我不会画地图啦~)
博主为从区域规划转行地图学的小学渣一枚,最近处理数据希望对结果进行三维可视化,意外发现从小用到大的EXCEL可以绘制地图且功能非常强大,在这里做一下简单介绍,希望可以给看官提供些许帮助.那下面就开始吧 ...
- Python——使用matplotlib绘制柱状图
Python——使用matplotlib绘制柱状图 1.基本柱状图 首先要安装matplotlib(http://matplotlib.org/api/pyplot_api.htm ...
随机推荐
- [转载]Office Visio快捷键
“帮助”任务窗格和“帮助”窗口 使用“帮助”任务窗格和“帮助”窗口 通过“帮助”任务窗格,您可以访问“Microsoft Office Visio 帮助”的全部内容,该窗格显示为 Microsoft ...
- Adaptive Placeholder – 自适应的占位符效果
在早期,我们都是通过使用 JavaScript 来实现占位符功能.而现在,HTML5 原生提供的 placeholder 属性让我们在现代浏览器轻松就能实现这样的功能.这里向大家分享一个自适应的占位符 ...
- Normalize.css – 现代 Web 开发必备的 CSS resets
Normalize.css 是一个可定制的 CSS 文件,使浏览器呈现的所有元素,更一致和符合现代标准.它正是针对只需要统一的元素样式.该项目依赖于研究浏览器默认元素风格之间的差异,精确定位需要重置的 ...
- Android 软件开发之如何使用Eclipse Debug调试程序详解及Eclipse常用快捷键(转)
1.在程序中添加一个断点如果所示:在Eclipse中添加了一个程序断点 在Eclipse中一共有三种添加断点的方法 第一种: 在红框区域右键出现菜单后点击第一项 Toggle Breakpoint 将 ...
- 【Java基础】方法
Num1:检查参数的有效性 绝大多数的方法和构造器对于传递给它们的参数值都会有某些限制.比如:索引值必须是非负数,对象引用不能为null等等.这些都很常见,你应该在文档中清楚地指明所有这些限制,并在方 ...
- Azure SQL Database (1) 用户手册
<Windows Azure Platform 系列文章目录> 最新更新2016年6月17日 下载地址:Azure SQL Database用户手册
- Electro桌面应用开发之HelloWorld
简介 Electron (http://http://electron.atom.io)提供了一个使用Node.js进行桌面应用开发的环境. 本文介绍了一个基于Electron的HelloWorld ...
- .NET平台下IIS7.5+无后缀名伪静态实现办法
首先新建一个应用程序池,名称任意,比如:nettest,托管管道模式先暂时设置为集成模式,等下面的一系列设置完成之后再设置成经典模式: 部署好站点,并将此站点的应用程序池设置为nettest; 选中站 ...
- 画一画javascript原型链
在javascript中,几种数据类型String,Number,Boolean,Object,Function都是函数,可称之为函数对象. 可以说拥有prototype属性的都是函数. 所有对象都拥 ...
- 插入排序---直接插入排序算法(Javascript版)
将n个元素的数列分为已有序和无序两个部分. 数列:{a1,a2,a3,a4,…,an} 将该数列的第一元素视为有序数列,后面都视为无序数列: {{a1},{a2,a3,a4,…,an}} 将无序数列中 ...