ACM Computer Factory
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4829 Accepted: 1641 Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

带有拆点+寻找路径的最大流。。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int INF=0x3f3f3f3f;
const int MaxE=3000,MaxV=300;

struct Edge
{
    int to,next,flow,init_flow;
}E[MaxE];

bool vis[MaxV];
int Adj[MaxV],Size,dist[MaxV],src,sink;

void Init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int w)
{
    E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
    E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
}

void bfs()
{
    memset(vis,false,sizeof(vis));
    memset(dist,0,sizeof(dist));
    queue<int> q;
    q.push(src);  vis[src]=true;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=Adj;~i;i=E.next)
        {
            int v=E.to;
            if(E.flow&&!vis[v])
            {
                q.push(v); vis[v]=true;
                dist[v]=dist+1;
            }
        }
    }
}

int dfs(int u,int delta)
{
    if(u==sink)
    {
        return delta;
    }
    else
    {
        int ret=0;
        for(int i=Adj;~i&&delta;i=E.next)
        {
            int v=E.to;
            if(E.flow&&dist[v]==dist+1)
            {
                int dd=dfs(v,min(E.flow,delta));
                E.flow-=dd; E[i^1].flow+=dd;
                delta-=dd; ret+=dd;
            }
        }
        return ret;
    }
}

int maxflow()
{
    int ret=0;
    while(true)
    {
        bfs();
        if(!vis[sink]) return ret;
        ret+=dfs(src,INF);
    }
}

struct mechine
{
    int time,in[20],out[20];
}M[100];

int main()
{
    int p,n;
    while(scanf("%d%d",&p,&n)!=EOF)
    {
        Init();

for(int i=1;i<=n;i++)
        {
            scanf("%d",&M.time);
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.in[j]);
            }
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.out[j]);
            }
        }
        for(int i=1;i<=n;i++)
        {
            Add_Edge(i,i+n,M.time);
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue;
                bool flag=true;
                for(int k=0;k<p;k++)
                {
                    if(M.out[k]==M[j].in[k]) continue;
                    else if(M[j].in[k]==2) continue;
                    else
                    {
                        flag=false;
                        break;
                    }
                }
                if(flag)
                {
                    Add_Edge(i+n,j,INF);
                }
            }
            bool flagS=true,flagT=true;
            for(int k=0;k<p;k++)
            {
                if(M.in[k]==1) flagS=false;
                if(M.out[k]==0) flagT=false;
            }
            if(flagS) Add_Edge(0,i,INF);
            if(flagT) Add_Edge(i+n,2*n+1,INF);
        }
        src=0; sink=2*n+1;
        int Flow=maxflow();
        int num=0;
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    num++;
            }
        }
        printf("%d %d\n",Flow,num);
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    printf("%d %d %d\n",u-n,v,E.init_flow-E.flow);
            }
        }

}
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3464 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. PHP Yii2.0(一):环境搭建 & 问题集锦

    第一节 简单认识版本的异同 (1)版本说明 在安装和使用之前,我们需要知道 PHP Yii 有两个不同的版本(Yii 1.*或者Yii 2.*),这两个版本的目录结构不一样,其具体使用方式差异较大,因 ...

  2. ASP.NET 系列:RBAC权限设计

    权限系统的组成通常包括RBAC模型.权限验证.权限管理以及界面访问控制.现有的一些权限系统分析通常存在以下问题: (1)没有权限的设计思路 认为所有系统都可以使用一套基于Table设计的权限系统.事实 ...

  3. xcode更新,想想也是醉了

    每次更新,都要整个文件全部更新,这下载速度,想想也是醉了,苹果你就不能搞了更新包吗!!

  4. AJAX(一)AJAX的简介和基础

    本节简介(异步链接服务器对象)XMLHTTPRequest以及AJAX的简介. AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML). AJ ...

  5. iOS边练边学--多线程练习的多图片下载 以及 使用第三方框架(SDWebImage)的多图片下载

    一.自己实现多图片下载应该注意的问题 沙盒缓存的问题 程序缓存的问题 cell重复利用显示图片混乱的问题 -- 用户拖拽快,下载图片慢导致的 解决图片混乱引入NSOperation集合的问题 资源下载 ...

  6. poj3580 伸展树(区间翻转 区间搬移 删除结点 加入结点 成段更新)

    好题.我做了很久,学了大牛们的区间搬移.主要的代码都有注释. #include<cstdio> #include<cstring> #include<iostream&g ...

  7. getHibernateTemplate()的用法

    getHibernateTemplate() spring 中获得由spring所配置的hibernate的操作对象,然后利用此对象进行,保存,修改和删除等操作,此方法是在配置了spring以后,hi ...

  8. jstl是自动就有的吗,不是的Unknown tag (c:if).

    这个错误的原因就是没有导包 http://www.runoob.com/jsp/jsp-jstl.html 这个网站有方法

  9. POJ1037A decorative fence(动态规划+排序计数+好题)

    http://poj.org/problem?id=1037 题意:输入木棒的个数n,其中每个木棒长度等于对应的编号,把木棒按照波浪形排序,然后输出第c个; 分析:总数为i跟木棒中第k短的木棒 就等于 ...

  10. 慎用 Enum.GetHashCode()

    公司里遗留下了相当多的 Enum.GetHashCode()来获取枚举值的代码 但是这会产生装箱行为的!!因为Enum是值类型,GetHashCode()是Object的方法,调用GetHashCod ...