ACM Computer Factory
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4829 Accepted: 1641 Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

带有拆点+寻找路径的最大流。。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int INF=0x3f3f3f3f;
const int MaxE=3000,MaxV=300;

struct Edge
{
    int to,next,flow,init_flow;
}E[MaxE];

bool vis[MaxV];
int Adj[MaxV],Size,dist[MaxV],src,sink;

void Init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int w)
{
    E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
    E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
}

void bfs()
{
    memset(vis,false,sizeof(vis));
    memset(dist,0,sizeof(dist));
    queue<int> q;
    q.push(src);  vis[src]=true;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=Adj;~i;i=E.next)
        {
            int v=E.to;
            if(E.flow&&!vis[v])
            {
                q.push(v); vis[v]=true;
                dist[v]=dist+1;
            }
        }
    }
}

int dfs(int u,int delta)
{
    if(u==sink)
    {
        return delta;
    }
    else
    {
        int ret=0;
        for(int i=Adj;~i&&delta;i=E.next)
        {
            int v=E.to;
            if(E.flow&&dist[v]==dist+1)
            {
                int dd=dfs(v,min(E.flow,delta));
                E.flow-=dd; E[i^1].flow+=dd;
                delta-=dd; ret+=dd;
            }
        }
        return ret;
    }
}

int maxflow()
{
    int ret=0;
    while(true)
    {
        bfs();
        if(!vis[sink]) return ret;
        ret+=dfs(src,INF);
    }
}

struct mechine
{
    int time,in[20],out[20];
}M[100];

int main()
{
    int p,n;
    while(scanf("%d%d",&p,&n)!=EOF)
    {
        Init();

for(int i=1;i<=n;i++)
        {
            scanf("%d",&M.time);
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.in[j]);
            }
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.out[j]);
            }
        }
        for(int i=1;i<=n;i++)
        {
            Add_Edge(i,i+n,M.time);
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue;
                bool flag=true;
                for(int k=0;k<p;k++)
                {
                    if(M.out[k]==M[j].in[k]) continue;
                    else if(M[j].in[k]==2) continue;
                    else
                    {
                        flag=false;
                        break;
                    }
                }
                if(flag)
                {
                    Add_Edge(i+n,j,INF);
                }
            }
            bool flagS=true,flagT=true;
            for(int k=0;k<p;k++)
            {
                if(M.in[k]==1) flagS=false;
                if(M.out[k]==0) flagT=false;
            }
            if(flagS) Add_Edge(0,i,INF);
            if(flagT) Add_Edge(i+n,2*n+1,INF);
        }
        src=0; sink=2*n+1;
        int Flow=maxflow();
        int num=0;
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    num++;
            }
        }
        printf("%d %d\n",Flow,num);
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    printf("%d %d %d\n",u-n,v,E.init_flow-E.flow);
            }
        }

}
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3464 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. iOS 苹果自带地图定位Core Location

    Core Location是iOS SDK中一个提供设备位置的框架.可以使用三种技术来获取位置:GPS.蜂窝或WiFi.在这些技术中,GPS最为精准,如果有GPS硬件,Core Location将优先 ...

  2. MVC5 + EF6 + Bootstrap3 (9) HtmlHelper用法大全(下)

    文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc5-ef6-bs3-get-started-httphelper-part2.html 上一节 ...

  3. 查询一个ID出现2种结果的情况

    项目中书籍分个人和机构,分属不同的表 所以有的时候ID是一样的,那么只根据ID查询书籍就会存在ID=xxx的既有个人又有机构,而通常我们可能只需要一个,多的没做区分就出问题了! 所以数据统一做查询的时 ...

  4. [C/C++基础] C语言常用函数memset的使用方法

    函数声明:void *memset(void *s, int ch, size_t n); 用途:为一段内存的每一个字节都赋予ch所代表的值,该值采用ASCII编码. 所属函数库:<memory ...

  5. xml基本操作

    在实际项目中遇到一些关于xml操作的问题,被逼到无路可退的时候终于决定好好研究xml一番.xml是一种可扩展标记语言,可跨平台进行传输,因此xml被广泛的使用在很多地方. 本文由浅入深,首先就xml的 ...

  6. angular学习-入门基础

    angular .caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #00 ...

  7. CreateCompatibleDC与BitBlt 学习

    CreateCompatibleDC与BitBlt CreateCompatibleDC 创建一个与指定设备一致的内存设备描述表. HDC CreateCompatibleDC(HDC hdc //设 ...

  8. iOS边练边学--级联菜单的两种实现方法

    一.方法1:如图,图中的两个tableView分别交给两个控制器来管理 重点难点:categoryTableView被点击之后,subcategoryTableView要取得相应的数据进行刷新,所以s ...

  9. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  10. Java-集合类汇总

    结构图: Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set Map ├Hashtable ├HashMap └WeakH ...