ACM Computer Factory
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4829 Accepted: 1641 Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

带有拆点+寻找路径的最大流。。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int INF=0x3f3f3f3f;
const int MaxE=3000,MaxV=300;

struct Edge
{
    int to,next,flow,init_flow;
}E[MaxE];

bool vis[MaxV];
int Adj[MaxV],Size,dist[MaxV],src,sink;

void Init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int w)
{
    E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
    E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
}

void bfs()
{
    memset(vis,false,sizeof(vis));
    memset(dist,0,sizeof(dist));
    queue<int> q;
    q.push(src);  vis[src]=true;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=Adj;~i;i=E.next)
        {
            int v=E.to;
            if(E.flow&&!vis[v])
            {
                q.push(v); vis[v]=true;
                dist[v]=dist+1;
            }
        }
    }
}

int dfs(int u,int delta)
{
    if(u==sink)
    {
        return delta;
    }
    else
    {
        int ret=0;
        for(int i=Adj;~i&&delta;i=E.next)
        {
            int v=E.to;
            if(E.flow&&dist[v]==dist+1)
            {
                int dd=dfs(v,min(E.flow,delta));
                E.flow-=dd; E[i^1].flow+=dd;
                delta-=dd; ret+=dd;
            }
        }
        return ret;
    }
}

int maxflow()
{
    int ret=0;
    while(true)
    {
        bfs();
        if(!vis[sink]) return ret;
        ret+=dfs(src,INF);
    }
}

struct mechine
{
    int time,in[20],out[20];
}M[100];

int main()
{
    int p,n;
    while(scanf("%d%d",&p,&n)!=EOF)
    {
        Init();

for(int i=1;i<=n;i++)
        {
            scanf("%d",&M.time);
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.in[j]);
            }
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.out[j]);
            }
        }
        for(int i=1;i<=n;i++)
        {
            Add_Edge(i,i+n,M.time);
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue;
                bool flag=true;
                for(int k=0;k<p;k++)
                {
                    if(M.out[k]==M[j].in[k]) continue;
                    else if(M[j].in[k]==2) continue;
                    else
                    {
                        flag=false;
                        break;
                    }
                }
                if(flag)
                {
                    Add_Edge(i+n,j,INF);
                }
            }
            bool flagS=true,flagT=true;
            for(int k=0;k<p;k++)
            {
                if(M.in[k]==1) flagS=false;
                if(M.out[k]==0) flagT=false;
            }
            if(flagS) Add_Edge(0,i,INF);
            if(flagT) Add_Edge(i+n,2*n+1,INF);
        }
        src=0; sink=2*n+1;
        int Flow=maxflow();
        int num=0;
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    num++;
            }
        }
        printf("%d %d\n",Flow,num);
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    printf("%d %d %d\n",u-n,v,E.init_flow-E.flow);
            }
        }

}
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3464 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. WP8.1&Win10开发:TextBox获取和失去焦点小技巧

    获取焦点:用Focus方法让Textbox获取焦点.代码示例:textbox.Focus(FocusState.Pointer); 失去焦点:让其他控件获取焦点,如Textblock控件(注意要将Te ...

  2. jsoup抓取借书记录

    package tushuguan; import java.io.IOException; import java.util.ArrayList; import java.util.HashMap; ...

  3. grootJs属性扩展 groot.bindExtend

    index12.html <html><head> <title>grootJs属性扩展 groot.bindExtend</title> <sc ...

  4. How to use VS2012 remote debug Windows Azure Cloud Services

    Background: Windows Azure Cloud Services 可以在本地调试,使用Visual Studio 2012 + 模拟器 Emulator.但是模拟器的工作状态和环境和真 ...

  5. 原生js dom记忆的内容

    1.DOM基础getElementByIdgetElementByTagNamegetElementByName getElementsByClass querySelector querySelec ...

  6. [BZOJ2753][SCOI2012]滑雪与时间胶囊(特殊的有向树形图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2753 分析: 第一问:直接BFS扩展知道无法扩展 第二问: 看似就是最小树形图啊= = ...

  7. 第三十课:JSDeferred详解1

    本课难度非常大,看一遍,蛋会疼,第二遍蛋不舒服,第三遍应该貌似懂了.初学者莫来,没必要,这完全就是一个研究. JSDeferred是日本高手cho45搞出来的,其易用性远胜于Mochikit Defe ...

  8. java多线程-Exchanger

    简介: 可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给exchange方法,与伙伴线程进行匹配,并且在返回时接收其伙伴的对象.Exchanger 可能被视为Synchr ...

  9. MVC学习Day01

    ~~~~ =============================================================================================== ...

  10. 【CodeForces 577B】Modulo Sum

    题 题意 给你n(1 ≤ n ≤ 106)个数a1..an(0 ≤ ai ≤ 109),再给你m( 2 ≤ m ≤ 103)如果n个数的子集的和可以被m整除,则输出YES,否则NO. 分析 分两种情况 ...