css3中的transform让我们操作变形变得很简单,诸如,translate–移动,scale–缩放,rotate–旋转,skew–斜切。这几个属性很方便,也很简单,但是其中matrix我们就不常使用了吧。-webkit-transform: matrix(1, 0, 0, 1, 100, 100)看到这样一句css,你也许很讨厌怎么一堆的数字,你也许斜视matrix–css也能搞出这货?这篇文章我们一起探讨一下transform中的matrix。

一、初识matrix

2d matrix提供6个参数啊a,b,c,d,d,e,f其基本写法如下:

回顾一下高中数学,或者线性代数,即可知道matrix计算方法。x和y是元素初始的坐标,x’ 和y’则是通过矩阵变换后得到新的坐标。通过中间的那个3×3的变换矩阵,对原先的坐标施加变换,就能得到新的坐标了。依据矩阵变换规则即可得到: x’=ax+cy+e
y’=bx+dy+f。

transform中translate,scale,rotate,skew背后实现原理也对应着matrix变化,下边依次解释:

变换矩阵公式可参考变换矩阵wiki(http://zh.wikipedia.org/zh-cn/%E5%8F%98%E6%8D%A2%E7%9F%A9%E9%98%B5)

二、移动translate

移动matrix参数为:matrix(1,0,0,1,Δx,Δy)(Δx,Δy分别对应x和y轴的增量)。由此公式可知:

-webkit-transform: translate(100px,100px);即对应着-webkit-transform: matrix(1, 0, 0, 1, 100, 100);

推算出: x’ = 1*x+0 * y+100 = x+100 , y’ = 0 * x+1 * y+100 = y+100。

三、缩放scale

缩放matrix参数为:matrix(kx*x,0,0,ky*y,0,0)(kx,和ky分别对应x和y轴缩放比率)。由此公式可知:

-webkit-transform: scale(1.5,1.5);及对应着 -webkit-transform: matrix(1.5, 0, 0, 1.5, 0, 0);

推算出: x’ = 1.5*x+0 * y+0 = 1.5 * x , y’ = 0 * x+1.5 * y+0 =1.5 * y。

四、旋转rotate

旋转matrix参数为:matrix(cosθ,sinθ,-sinθ,cosθ,0,0),由此可知

-webkit-transform: rotate(45deg);即对应着 -webkit-transform: matrix(0.53, 0.85, -0.85, 0.53, 0, 0);

(sin(45′)=0.85,cos(45′)=0.53)

推算: x’ = x*cos(45′)-y*sin(45′)+0 = x*cos(45′)-y*sin(45′),y’ = x*sin(45′)+y*cos(45′)+0 = x*sin(45′)+y*cos(45′)

五、斜切skew

斜切matrix参数为matrix(1,tan(θy),tan(θx),1,0,0),由此可知

-webkit-transform: skew(45deg);即对应着 -webkit-transform: matrix(1,0,1,1,0,0);

(tan(45′)=1)

推算出 x’ = x+y*tan( 45′ )+0 = x+y*tan( 45′ ), y’ = x*tan( 45′ )+y+0 = x*tan( 45′)+y

六、镜相对称

镜像对称没有相应的简化操作。终于有一个只能用matrix实现得了。。。

假设对称轴为y=kx直线,那么以这条直线对称的图形matrix为 
matrix(2*ux^2-1,2*ux*uy,2*ux*uy,2*uy^2-1,0,0) 
求解过程为: 
假设(ux,uy)为直线方向的单位向量。也就是说,如果直线方程是y=kx,那么ux=1/sqrt(1+k^2),uy=k/sqrt(1+k^2), 
推算出: x’ = (2*ux^2-1)*x+2*ux*uy*y 
y’ = 2*ux*uy*x+(2*uy^2-1)*y。 

七、3d变换矩阵 
3d矩阵即为透视投影,推算方法与2d矩阵相类似 

3d变换矩阵代码示例,matrix变为matrix3d 
-webkit-transform: matrix3d(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) 

八、ie matrix滤镜

ie matrix滤镜仅能实现旋转和拉伸,具体写法为:

filter: progid:DXImageTransform.Microsoft.Matrix( enabled= bEnabled , SizingMethod= sMethod , FilterType= sType , Dx= fDx , Dy= fDy , M11= fM11 , M12= fM12 , M21= fM21 , M22= fM22 ) 
其中M11, M12, M21, M22分别对应2d矩阵中的a,c,b,d。 
1’ 所以旋转实现即为:

M11=cos(roation),M12=-sin(roation),M21=sin(roation),M22=cos(roation)

对应此段代码ie7下截图为:

filter: progid:DXImageTransform.Microsoft.Matrix( enabled= bEnabled , SizingMethod=’auto expand’, FilterType= sType , M11= 0.53 , M12= -0.85 , M21= 0.85 , M22= 0.53 ) 

2‘ ie7缩放实现对应截图:

filter: progid:DXImageTransform.Microsoft.Matrix( enabled= bEnabled , SizingMethod=’auto expand’, FilterType= sType , M11=1.5 , M12= 0 , M21= 0 , M22=1.5 ) 

其他变换可以发挥想想啦。。。。

参考文章: 
http://zh.wikipedia.org/zh-cn/%E5%8F%98%E6%8D%A2%E7%9F%A9%E9%98%B5
http://www.w3.org/TR/css3-2d-transforms/ 
http://dev.opera.com/articles/view/understanding-the-css-transforms-matrix/ 
http://msdn.microsoft.com/en-us/library/ms533014(v=vs.85).aspx

CSS3 Transform Matrix的更多相关文章

  1. css3 transform matrix矩阵的使用

      Transform 执行顺序问题 — 后写先执行 matrix(a,b,c,d,e,f) 矩阵函数 •通过矩阵实现缩放 x轴缩放 a=x*a    c=x*c     e=x*e; y轴缩放 b= ...

  2. 【CSS3】 理解CSS3 transform中的Matrix(矩阵)

    理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...

  3. 理解CSS3 transform中的Matrix(矩阵)

    一.哥,我被你吓住了 打架的时候会被块头大的吓住,学习的时候会被奇怪名字吓住(如“拉普拉斯不等式”).这与情感化设计本质一致:界面设计好会让人觉得这个软件好用! 所以,当看到上面“Matrix(矩阵) ...

  4. 理解CSS3 transform中的Matrix(矩阵)——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...

  5. css3 transform中的matrix矩阵

    CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3, 如上面矩阵示 ...

  6. 矩阵matrix变换的用法(css3属性transform: matrix)

    参数 2D矩阵的表示 matrix(a,b,c,d,e,f),其中6个参数在矩阵的分布: -- -- | a c e | | b d f | | 0 0 1 | -- -- 在CSS3中矩阵的原始值是 ...

  7. HTML 学习笔记 CSS3 (2D Matrix)

    Matrix 矩阵 那么什么是矩阵呢? 矩阵可以理解为方阵,只不过 平时方阵里面站着人 矩阵中是数值: CSS3中的矩阵: css3中的矩阵指的是一个方法,书写为matrix() 和 matrix3d ...

  8. 制作变形、移位、扭曲等效果:《CSS3 transform》

    今天开始我们一起来学习有关于CSS3制作动画的几个属性:变形(transform).转换(transition)和动画(animation)等更高级的CSS3技术.本文主要介绍的是这三个属性之中的第一 ...

  9. 【消灭代办】第2周 - 数组判断、开发工具、transform:matrix、Grid

    2018.11.19代办一:[数组判断] 代办描述: 怎么判断一个数组是数组呢?其实这个也是一个常考的题目 关键考点: 1.js中对象类型判断的几种方法 2.数组的知识和灵活运用 解决方案s: 篇幅过 ...

随机推荐

  1. Hbase中rowkey设计原则

    1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度 ...

  2. MongoDB上的索引

    1. 将索引建在number键上名为nameIndex并且为正序索引({number:-1}为倒序索引) 如: db.list名.ensureIndex({number:1},{name:" ...

  3. java用spring实现文件下载

    今天是我第一博客文章,希望写出来的东西能让大家看明白,欢迎大家给我留言. html页面: <a href="#" onclick="downLoad()" ...

  4. Sparse Graph---hdu5876(set+bfs+补图求最短路)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5876 题意:有一个含有n个点的无向图,已知图的补图含有m条边u, v:求在原图中,起点s到 ...

  5. UIBezierPath 画线

    使用UIBezierPath类可以创建基于矢量的路径,这个类在UIKit中.此类是Core Graphics框架关于path的一个封装.使用此类可以定义简单的形状,如椭圆或者矩形,或者有多个直线和曲线 ...

  6. ios UIPickerView 技巧集锦(包括循环滚动)

    摘自: http://blog.csdn.net/ipromiseu/article/details/7436521 http://www.cnblogs.com/dabaopku/archive/2 ...

  7. 通过CSS使文本框中输入的小写字母变大写字母

    在style.css文件中写 .dataField input{text-transform:uppercase;} .dataField textarea {text-transform:upper ...

  8. 转载:如何运用VI编辑器进行查找替换

    使用vi编辑器编辑长文件时,常常是头昏眼花,也找不到需要更改的内容. 这时,使用查找功能尤为重要. 方法如下: 1.命令模式下输入“/字符串”,例如“/Section 3”. 2.如果查找下一个,按“ ...

  9. 程序设计: 猫大叫一声,所有的老鼠都开始逃跑,主人被惊醒。(C#语言)

    要求:  1.要有联动性,老鼠和主人的行为是被动的.  2.考虑可扩展性,猫的叫声可能引起其他联动效应. 我么能事件来一步一步来实现: 将要执行的老鼠逃跑,和主人惊醒的行为注册到事件中,猫叫之后引发事 ...

  10. saltstack之(八)配置管理部署LAMP

    场景:公司有10台服务器需要安装lamp测试环境,使用saltstack编写state文件进行批量部署,可以提高工作效率,减少人为出错的可能性,保证环境的一致性. saltstack之配置管理lamp ...