PRML Chapter 1. Introduction

为了防止忘记,要把每章的重要内容都记下来,从第一章开始

2012@3@28
今天又回去稍微翻了一下第一章内容,发现第一次看的时候没有看透,每次翻都能翻出新的内容和感悟来。这主要得益于后面其他书里看到的一些内容后,再来看前面的某些话,就知道这些话不是白写的了,而是每一句都有一些深层的意义。

因此对于PRML这样的书,看一两遍是不够的,有空要多回翻

P 2

generalization的定义:The
ability to categorize correctly new examples that differ from those used for training is known as generalization

P3

1) classification 和 regression 的区别:classification的目标结果是有限的(finite),离散的(discrete),而regression的目标结果是连续的(continuous)

2) 无监督学习的目标一般可以是:聚类、密度估计(density estimation)或降维(高维降成2、3维)以可视化(visualization)

3) exploration 和 exploitation 的区别:exploration
是开发未知领域,而exploitation 是利用已知状态

P10

regularization 作者提到在E(w)(这个函数名字现在忘记了,到时想起来改正)上添加一项|W|^2,就能避免w中的值过大导致over-fitting,这就是regularization
的作用。Wikipedia的解释:In mathematics and statistics,
particularly in the fields of machine
learning
 and inverse
problems
, regularization involves
introducing additional information in order to solve an ill-posed
problem
 or to prevent overfitting.

Shrinkage  的概念,在Wiki中有http://en.wikipedia.org/wiki/Shrinkage_(statistics)

1.4 The Curse of Dimensionality

维度灾难就是,当输入数据的维数增大时,大部分数据的位置都将趋于整个数据空间的边缘。

直观的讲,当一个输入向量为v(x1, x2,  … , xn),有n维输入时,其实只要其中任意一个xi的值偏大,那么这个点就会处于整个数据空间的边缘位置,而对所有xi都比较小的可能性是很小的。

用书中P36页的定性描述可以表示为,在D维空间中一个直径为r=1的球体(sphere  超球体:hypersphere)体积,以及一个直径为r=1-ε与直径为r=1之间的空隙的体积,这两个体积的比值来说明维度灾难

如下图:

对于直径为r的超球体体积可以表示为VD(r)=KDrD,其中KD是一个只和D相关的常数,那么如下比例:

vp : VD(1)−VD(1−ϵ)VD(1)

就是ε那个空隙的体积和整个直径为r的超球体的体积之比。

我们可以发现,对于二维的圆,ε如果小,那么中间那个r=1-ε的圆的面积就会很大,导致整个vp的值很小。如ε=0.1时,vp=1−(1−0.1)2=0.19,所以ε那个环只占整个面积的19%

但是如果D很大很大呢,这时我们就会发现,即使ε很小很小,但是vp也会趋近于1,就是说在高维超球体中,ε的那个环的体积即使在ε很小的情况下,也会占据超球体的大多数体积,所以整个超球体中的大多数点都分布在整个超球体的边缘!

不过我还不是很明白具体应用中维度灾难导致的后果,要继续仔细看。

P43

discriminative models vs. generative models。书中43页排列了三种由复杂到简单的模型:

(a) generative
models
 同时对输入和输出数据进行建模,设x为输入特征,Ck为第k个输出类别,那么所求后验概率为 p(Ck|x)。

贝叶斯公式如下:p(Ck|x)=p(x|Ck)p(Ck)p(x)

那么产生式模型就要对每一对p(x|Ck)估计概率密度,同时再估计p(Ck)的单独概率密度(先验),而p(x)可由p(x)=∑kp(x|Ck)p(Ck)得到

或者产生式模型还可以直接估计p(x,Ck),我的理解就是枚举所有x和Ck的派对出现的概率。

今天才大致理解了何为产生式模型,所以产生式模型有如下典型(从大禹姐那里抄来的),从上述角度看,就可以知道为啥朴素贝叶斯是典型的产生式模型啦。

(b) discriminative
models
  判别式模型直接对p(Ck|x)建模,而不估计p(x|Ck)的概率密度。因此这就是传说中的“判别式模型估计条件概率”。

most discriminative models are inherently supervised and
cannot easily be extended to unsupervised
learning

判别式模型大概有:

(c) 最简单的模型,找一个
discriminant function f(x),直接将输入 x 映射为输入类别 Ck ,就是说,这个方法甚至不计算p(Ck|x)而直接得出答案Ck。

至此第一章大致看完,2012年3月1日,22:10

PRML Chapter 1. Introduction的更多相关文章

  1. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  2. JVM Specification 9th Edition (2) Chapter 1. Introduction

    Chapter 1. Introduction 翻译太累了,我就这样的看英文吧. 内容列表 1.1. A Bit of History 1.2. The Java Virtual Machine 1. ...

  3. TIJ——Chapter One:Introduction to Objects

    ///:~容我对这个系列美其名曰"读书笔记",其实shi在练习英文哈:-) Introduction to Objects Object-oriented programming( ...

  4. PRML读书笔记——Introduction

    1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...

  5. Chapter 1. Introduction gradle介绍

      We would like to introduce Gradle to you, a build system that we think is a quantum leap for build ...

  6. Chapter 3 Introduction to Objects and Input/Output

    与声明一个primitive variable不同,声明一个对象的时候,并不创建用来存储一个对象的内存空间,而是创建了一个存储该对象所在内存空间的地址. 在java里,new是一个操作符,它让系统分配 ...

  7. Logback手冊 Chapter 1: Introduction

    翻译不周,多多包括 ---------------------------------------------------------------------------------------切割线 ...

  8. translation of 《deep learning》 Chapter 1 Introduction

    原文: http://www.deeplearningbook.org/contents/intro.html Inventors have long dreamed of creating mach ...

  9. Java Concurrency In Practice - Chapter 1 Introduction

    1.1. A (Very) Brief History of Concurrency motivating factors for multiple programs to execute simul ...

随机推荐

  1. Go 命令之 godep

    本文参考:http://www.cnblogs.com/me115/p/5528463.html#h20 http://studygolang.com/articles/4385 关于Godep 发现 ...

  2. [转]基于四叉树(QuadTree)的LOD地形实现

    实现基于四叉树的LOD地形时,我遇到的主要问题是如何修补地形裂缝. 本段我将描述使用LOD地形的优势,我实现LOD地形的思路,实现LOD地形核心模块的详细过程,以及修补地形裂缝的思路. 首先,LOD地 ...

  3. mac基本用法

    1.屏幕截图 command + shift + 4 2.切换到桌面 command + f3 3.右击 双支轻拍 4.彻底退出窗口 command + q 5.关闭窗口 cmd + w 6.隐藏窗口 ...

  4. Dottrace跟踪代码执行时间

    当自己程序遇到性能问题,比如请求反应缓慢,怎么分析是哪里出了问题呢?dottrace可以帮助.net程序跟踪出代码里每个方法的执行时间,这样让我们更清晰的看出是哪里执行时间过长,然后再分析应该怎样解决 ...

  5. 微软office web apps 服务器搭建之在线文档预览(一)

    office web apps安装 系统要求为Windows Server 2012, 注意:转换文档需要两台服务器,一台为转换server,另外一台为域控server.(至于为什么要两台,这个请自行 ...

  6. C++成员权限控制(总结)

    1) 前言 在我学习C++的过程中,类中成员的权限控制一直是比较头疼的一个点,一会public,一会又private,还有protected,再加点继承,而且又有公有继承.私有继承,保护继承,所以感觉 ...

  7. Boostrap(1)

    1.简介 Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,可以认为bootstrap就是一个样式库. ...

  8. jQuery应用之(三)jQuery链

    从前文的实例中,我们按到jQuery语句可以链接在一起,这不仅可以缩短代码长度,而且很多时候可以实现特殊的效果. <script type="text/javascript" ...

  9. Android平台的开发环境的发展演变

    因为之前学习java语言的时候安装过了eclipse,所以想在eclipse上搭建android平台,在参照知乎上大神们的意见,发现了AS强大的代码提示.实时预览和搜索匹配等出色功能,最后还是选择在A ...

  10. shiro 与 web 的结合

    本次使用的jar包为 shiro-core-.jar shiro-web-.jar 从Shiro 1.2开始引入了Environment/WebEnvironment的概念,即由它们的实现提供相应的S ...