PRML Chapter 1. Introduction
为了防止忘记,要把每章的重要内容都记下来,从第一章开始
2012@3@28
今天又回去稍微翻了一下第一章内容,发现第一次看的时候没有看透,每次翻都能翻出新的内容和感悟来。这主要得益于后面其他书里看到的一些内容后,再来看前面的某些话,就知道这些话不是白写的了,而是每一句都有一些深层的意义。
因此对于PRML这样的书,看一两遍是不够的,有空要多回翻
P 2
generalization的定义:The
ability to categorize correctly new examples that differ from those used for training is known as generalization
P3
1) classification 和 regression 的区别:classification的目标结果是有限的(finite),离散的(discrete),而regression的目标结果是连续的(continuous)
2) 无监督学习的目标一般可以是:聚类、密度估计(density estimation)或降维(高维降成2、3维)以可视化(visualization)
3) exploration 和 exploitation 的区别:exploration
是开发未知领域,而exploitation 是利用已知状态
P10
regularization 作者提到在E(w)(这个函数名字现在忘记了,到时想起来改正)上添加一项|W|^2,就能避免w中的值过大导致over-fitting,这就是regularization
的作用。Wikipedia的解释:In mathematics and statistics,
particularly in the fields of machine
learning and inverse
problems, regularization involves
introducing additional information in order to solve an ill-posed
problem or to prevent overfitting.
Shrinkage 的概念,在Wiki中有http://en.wikipedia.org/wiki/Shrinkage_(statistics)
1.4 The Curse of Dimensionality
维度灾难就是,当输入数据的维数增大时,大部分数据的位置都将趋于整个数据空间的边缘。
直观的讲,当一个输入向量为v(x1, x2, … , xn),有n维输入时,其实只要其中任意一个xi的值偏大,那么这个点就会处于整个数据空间的边缘位置,而对所有xi都比较小的可能性是很小的。
用书中P36页的定性描述可以表示为,在D维空间中一个直径为r=1的球体(sphere 超球体:hypersphere)体积,以及一个直径为r=1-ε与直径为r=1之间的空隙的体积,这两个体积的比值来说明维度灾难
如下图:

对于直径为r的超球体体积可以表示为VD(r)=KDrD,其中KD是一个只和D相关的常数,那么如下比例:
vp : VD(1)−VD(1−ϵ)VD(1)
就是ε那个空隙的体积和整个直径为r的超球体的体积之比。
我们可以发现,对于二维的圆,ε如果小,那么中间那个r=1-ε的圆的面积就会很大,导致整个vp的值很小。如ε=0.1时,vp=1−(1−0.1)2=0.19,所以ε那个环只占整个面积的19%
但是如果D很大很大呢,这时我们就会发现,即使ε很小很小,但是vp也会趋近于1,就是说在高维超球体中,ε的那个环的体积即使在ε很小的情况下,也会占据超球体的大多数体积,所以整个超球体中的大多数点都分布在整个超球体的边缘!
不过我还不是很明白具体应用中维度灾难导致的后果,要继续仔细看。
P43
discriminative models vs. generative models。书中43页排列了三种由复杂到简单的模型:
(a) generative
models 同时对输入和输出数据进行建模,设x为输入特征,Ck为第k个输出类别,那么所求后验概率为 p(Ck|x)。
贝叶斯公式如下:p(Ck|x)=p(x|Ck)p(Ck)p(x)
那么产生式模型就要对每一对p(x|Ck)估计概率密度,同时再估计p(Ck)的单独概率密度(先验),而p(x)可由p(x)=∑kp(x|Ck)p(Ck)得到
或者产生式模型还可以直接估计p(x,Ck),我的理解就是枚举所有x和Ck的派对出现的概率。
今天才大致理解了何为产生式模型,所以产生式模型有如下典型(从大禹姐那里抄来的),从上述角度看,就可以知道为啥朴素贝叶斯是典型的产生式模型啦。
- Gaussian
distribution - Gaussian
mixture model - Multinomial
distribution - Hidden
Markov model - Naive
Bayes - AODE
- Latent
Dirichlet allocation
(b) discriminative
models 判别式模型直接对p(Ck|x)建模,而不估计p(x|Ck)的概率密度。因此这就是传说中的“判别式模型估计条件概率”。
most discriminative models are inherently supervised and
cannot easily be extended to unsupervised
learning
判别式模型大概有:
- Logistic
regression, a type of generalized
linear regression used for predicting binary or categorical outputs
(also known as maximum
entropy classifiers) - Linear
discriminant analysis - Support
vector machines - Boosting
- Conditional
random fields - Linear
regression - Neural
networks
(c) 最简单的模型,找一个
discriminant function f(x),直接将输入 x 映射为输入类别 Ck ,就是说,这个方法甚至不计算p(Ck|x)而直接得出答案Ck。
至此第一章大致看完,2012年3月1日,22:10
PRML Chapter 1. Introduction的更多相关文章
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- JVM Specification 9th Edition (2) Chapter 1. Introduction
Chapter 1. Introduction 翻译太累了,我就这样的看英文吧. 内容列表 1.1. A Bit of History 1.2. The Java Virtual Machine 1. ...
- TIJ——Chapter One:Introduction to Objects
///:~容我对这个系列美其名曰"读书笔记",其实shi在练习英文哈:-) Introduction to Objects Object-oriented programming( ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
- Chapter 1. Introduction gradle介绍
We would like to introduce Gradle to you, a build system that we think is a quantum leap for build ...
- Chapter 3 Introduction to Objects and Input/Output
与声明一个primitive variable不同,声明一个对象的时候,并不创建用来存储一个对象的内存空间,而是创建了一个存储该对象所在内存空间的地址. 在java里,new是一个操作符,它让系统分配 ...
- Logback手冊 Chapter 1: Introduction
翻译不周,多多包括 ---------------------------------------------------------------------------------------切割线 ...
- translation of 《deep learning》 Chapter 1 Introduction
原文: http://www.deeplearningbook.org/contents/intro.html Inventors have long dreamed of creating mach ...
- Java Concurrency In Practice - Chapter 1 Introduction
1.1. A (Very) Brief History of Concurrency motivating factors for multiple programs to execute simul ...
随机推荐
- ubuntu上怎么设置默认python命令是执行python3而不是python2
来源:https://segmentfault.com/q/1010000003713912 alternatives这么好的机制用起来呀. shell里执行: sudo update-alterna ...
- Python解析器源码加密系列之(一):标准c的tmpfile()、tmpfile_s()生成的临时文件究竟放在哪里了?
这两天由于修改python解释器的需求,需要用到tmpfile()来生成临时文件的FILE*,但是又担心这个临时文件是否存在于磁盘的某个地方,终究会被人找到,所以就简单做了以下几点实验,看看是否可以找 ...
- ubuntu apt-get修改源地址
亲测搜狐可用,其他备用 1.修改源地址:cp /etc/apt/sources.list /etc/apt/sources.list.bakvim /etc/apt/sources.list 修改之后 ...
- jsp中常用操作字符串的el表达式
由于在JSP页面中显示数据时,经常需要对显示的字符串进行处理,SUN公司针对于一些常见处理定义了一套EL函数库供开发者使用. 准备工作:1)导入jar包:standard.jar和jstl.jar2) ...
- Android 中 appcompat_v7与各类资源报错问题
最近导一个项目进eclipse弄了一天都弄不好,先总结如下 首先按照网上其他同志的导入sdk/extras下的appcompat_v7项目.然后 发现 我们这里已经更新到6.0了,也就是说,我们报错的 ...
- 怎样写 OpenStack Neutron 的 Plugin (一)
鉴于不知道Neutron的人也不会看这篇文章,而知道的人也不用我再啰嗦Neutron是什么东西,我决定跳过Neutron简介,直接爆料. 首先要介绍一下我的开发环境.我没有使用DevStack,而是直 ...
- 【转载】gcc 使用中常用的参数及命令
本文转载自:http://www.cnblogs.com/yaozhongxiao/archive/2012/03/16/2400473.html 如需转载,请注明原始出处.谢谢. --------- ...
- (旧)子数涵数·Flash——初识ActionScript
一.什么是AS(ActionScript) ActionScript,简称AS,中译为"动作脚本语言". 用于在Flash上实现一些光用Flash无法实现的功能. 在Flash界面 ...
- Windows Azure 名词定义(Glossary)
Glossary(名词) Definition(定义) Availability Set 可用性组 refers to two or more Virtual Machines deployed ac ...
- js的设计模式
<Practical Common Lisp>的作者 Peter Seibel 曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通 ...