准则

采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量。

分类器设计准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则

Fisher准则

Fisher线性判别分析LDA(Linearity Distinction Analysis)
基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影方向,与投影方向垂直的超平面就是两类的分类面,使得样本在该方向上投影后,达到最大的类间离散度和最小的类内离散度。 
Fisher线性判别并不对样本的分布进行任何假设,但在很多情况下,当样本维数比较高且样本数也比较多时,投影到一维空间后样本接近正态分布,这时可以在一维空间中用样本拟合正态分布,用得到的参数来确定分类阈值。

。。类间离差平方和最大,类内离差平方和最小的投影方向。准则函数:组间离差平方和/组内离差平方和;准则:超过阈值?

感知机准则

基本思想:对于线性判别函数,当模式的维数已知时,判别函数的形式实际上就已经确定下来,线性判别的过程即是确定权向量

线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则的更多相关文章

  1. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  2. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  3. 运用sklearn进行线性判别分析(LDA)代码实现

    基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...

  4. 线性判别分析 LDA

    点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...

  5. 线性判别分析LDA详解

    1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...

  6. 线性判别分析LDA原理总结

    在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...

  7. 机器学习中的数学-线性判别分析(LDA)

    前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈 ...

  8. 主成分分析(PCA)与线性判别分析(LDA)

    主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...

  9. LDA线性判别分析(转)

    线性判别分析LDA详解 1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...

随机推荐

  1. C语言 三级指针的应用

    //三级指针的使用 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #includ ...

  2. C语言 预处理三(条件编译--#if)

    //#if 条件编译 //一般用于产品各个版本的语言包 #include<stdio.h> #include<stdlib.h> //#都是预处理指令,条件表达式必须在预处理里 ...

  3. C#中的默认访问修饰符

    1.命名空间下的元素的默认访问修饰符 public : 同一程序集的其他任何代码或引用该程序集的其他程序集都可以访问该类型或成员.internal : 同一程序集中的任何代码都可以访问该类型或成员,但 ...

  4. GIS开源软件大全

    3 - F 3map:行星地球项目由3map驱动,这是一个自由软件,由Telstra宽带基金会创建并支持,提供客户端与服务器的能力以在线再现虚拟地球. Amein!:其界面介于ArcMap和UMN M ...

  5. text/html与text/plain有什么区别?

    MIME是服务器通知客户机传送文件是什么类型的主要方法,客户机浏览器也通过MIME告诉服务器它的参数. 在网上,如果接收到的文件没有MIME头,就默认它为HTML格式.但这样也不好,因为当MIME的包 ...

  6. LeetCode Question Difficulty Distribution

    参考链接:https://docs.google.com/spreadsheet/pub?key=0Aqt--%20wSNYfuxdGxQWVFsOGdVVWxQRlNUVXZTdEpOeEE& ...

  7. CUDA编程学习(二)

    将数据加载到GPU后,如何在grid下的block进行并行计算(一个grid包含多个block) /****How do we run code in parallel on the device** ...

  8. 大数据:从开源告诉你身边的IT故事

    最近我们Team利用Dream分布式计算平台,做了这样一件事情,将Github的大量数据通过爬虫抓取下来,通过分析后,我们抽取最近一年中部分的开发者和项目信息,得到了如下有趣的信息,故分享之,数据原汁 ...

  9. 琐碎--选择文件夹(路径)+生产txt格式的log+数据库操作方式

    记录日常工作常用到的一些方法: 1 选择文件操作,并将文件的路径记录下来: OpenFileDialog ofd = new OpenFileDialog(); ofd.Multiselect = f ...

  10. 第四十六课:MVC和MVVM的开发区别

    实现MVC的目的就是为了让M和V相分离.前端的MVC无法做到View和Model的相分离,而MVVM可以. 我们先来看一个用MVC模式开发的经典例子:(一定要深入了解这种开发的思想,而不是看懂代码) ...