线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
准则
采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量。
分类器设计准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
Fisher准则
Fisher线性判别分析LDA(Linearity Distinction Analysis)
基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影方向,与投影方向垂直的超平面就是两类的分类面,使得样本在该方向上投影后,达到最大的类间离散度和最小的类内离散度。
Fisher线性判别并不对样本的分布进行任何假设,但在很多情况下,当样本维数比较高且样本数也比较多时,投影到一维空间后样本接近正态分布,这时可以在一维空间中用样本拟合正态分布,用得到的参数来确定分类阈值。
。。类间离差平方和最大,类内离差平方和最小的投影方向。准则函数:组间离差平方和/组内离差平方和;准则:超过阈值?
感知机准则
基本思想:对于线性判别函数,当模式的维数已知时,判别函数的形式实际上就已经确定下来,线性判别的过程即是确定权向量
线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则的更多相关文章
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...
- 运用sklearn进行线性判别分析(LDA)代码实现
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...
- 线性判别分析 LDA
点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...
- 线性判别分析LDA详解
1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- 机器学习中的数学-线性判别分析(LDA)
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
随机推荐
- [转]reids客户端 redis-cli用法
连接:redis-cli -h machine -p port -n db转的:每次都搜,还是扔在这 Redis提供了丰富的命令(command)对数据库和各种数据类型进行操作,这些command可以 ...
- C语言 百炼成钢8
//题目22:两个乒乓球队进行比赛,各出三人.甲队为a,b,c三人,乙队为x,y,z三人.已抽签决定 //比赛名单.有人向队员打听比赛的名单.a说他不和x比,c说他不和x, z比,请编程序找出 //三 ...
- log4j输出日志乱码(转)
log4j日志文件乱码问题的解决方法 log4j日志文件中文乱码处理方法 log4j 控制台和文件输出乱码问题解决 写在前面,第三篇文章中将原因解释的最清楚,为什么设置为UTF-8或者GBK就生效了, ...
- easyui-combobox的取值问题
例子:<select id="cc" class="easyui-combobox" name="cc" style="wi ...
- WCF与ASMX Web服务差异比较[译]
First of all, it needs to understand that WCF Service provides all the capabilities of .NET web serv ...
- 数据库服务器的安装 (MySQL Server 5.7) :
MySQL 和 MariaDB 都是 Ubuntu 16.04 中的数据库服务器. MySQL Server 和 MariaDB Server的安装包都可以在Ubuntu 的默认软件源中找到,我们可以 ...
- 【MPI学习7】MPI并行程序设计模式:MPI的进程组和通信域
基于都志辉老师MPI编程书中的第15章内容. 通信域是MPI的重要概念:MPI的通信在通信域的控制和维护下进行 → 所有MPI通信任务都直接或间接用到通信域这一参数 → 对通信域的重组和划分可以方便实 ...
- servlet请求转发、包含以及重定向
请求转发: 方式一: ServletContext对象.getRequestDispatcher(目标资源的URI).forward(request,response); 目标资源的URI " ...
- Object C学习笔记15-协议(protocol)
在.NET中有接口的概念,接口主要用于定义规范,定义一个接口关键字使用interface.而在Object C 中@interface是用于定义一个类的,这个和.NET中有点差别.在Object C中 ...
- css限制图片大小,避免页面撑爆
/*==========限制图片大小======避免页面撑暴========*/img { max-width:100%;width:expression(width>669?"100 ...