线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
准则
采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量。
分类器设计准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
Fisher准则
Fisher线性判别分析LDA(Linearity Distinction Analysis)
基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影方向,与投影方向垂直的超平面就是两类的分类面,使得样本在该方向上投影后,达到最大的类间离散度和最小的类内离散度。
Fisher线性判别并不对样本的分布进行任何假设,但在很多情况下,当样本维数比较高且样本数也比较多时,投影到一维空间后样本接近正态分布,这时可以在一维空间中用样本拟合正态分布,用得到的参数来确定分类阈值。
。。类间离差平方和最大,类内离差平方和最小的投影方向。准则函数:组间离差平方和/组内离差平方和;准则:超过阈值?
感知机准则
基本思想:对于线性判别函数,当模式的维数已知时,判别函数的形式实际上就已经确定下来,线性判别的过程即是确定权向量
线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则的更多相关文章
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...
- 运用sklearn进行线性判别分析(LDA)代码实现
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...
- 线性判别分析 LDA
点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...
- 线性判别分析LDA详解
1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- 机器学习中的数学-线性判别分析(LDA)
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
随机推荐
- mousewheel 模拟滚动
div{ box-sizing:border-box; } .father{ width:500px; height:400px; margin:auto; margin-top: 50px; bor ...
- Linux Linux程序练习五
题目:编写两个进程a和b,利用共享内存技术,a向共享内存写字符串,b将从共享内存中读到的字符串在屏幕上打印出来. //创建共享内存区 #include <stdio.h> #include ...
- 实战 SQL Server 2008 数据库误删除数据的恢复
SQL Server中误删除数据的恢复本来不是件难事,从事务日志恢复即可.但是,这个恢复需要有两个前提条件: 1. 至少有一个误删除之前的数据库完全备份. 2. 数据库的恢复模式(Recovery m ...
- [tomcat7源码学习]初始化之catalina.home和catalina.base(转)
我们在代码中为了获取某个配置文件路径下的文件经常会这么写 String tomcatPath = System.getProperty("catalina.home") + &qu ...
- 集成架构:对比 Web API 与面向服务的架构和企业应用程序集成(转)
http://kb.cnblogs.com/page/521644/ 摘要:总体上讲,SOA 和 Web API 似乎解决的是同一个问题:以实时的.可重用的方式公开业务功能.本教程将分析这些举措有何不 ...
- 信息安全系统设计基础_exp3
北京电子科技学院(BESTI) 实 验 报 告 课程:信息安全系统设计基础 班级:1353 姓名:吴子怡.郑伟 学号:20135313.20135322 指导教师: 娄嘉鹏 实验 ...
- QT cannot open output file debug\OpencvTest.exe: Permission denied
问题:调试运行QT的时候遇到这个问题,发现时是由于没有正常关闭程序所致,导致后台有之前运行的程序在跑(电脑环境win7 64 Qt5.2.1 opencv2.4.6). 目前解决办法:手动关闭已在运行 ...
- "互联网思维"背后的谎言
互联网公司/思维是什么鬼,说来惭愧上学的时候还因为知道www(World Wide Web)的中文名自豪了好久,之后在”高等学府“里学习软件工程,还愚蠢的以为自己步入了互联网之门. internet嘛 ...
- 【MyEclipse 2015】 逆向破解实录系列【1】(纯研究)
声明 My Eclipse 2015 程序版权为Genuitec, L.L.C所有. My Eclipse 2015 的注册码.激活码等授权为Genuitec, L.L.C及其付费用户所有. 本文只从 ...
- Git.Framework 框架随手记--ORM查询返回实体对象
使用ORM有一个优势,可以通过某种机制将数据库中的数据转化为自己想要的对象形式数据.本章记录一下如何使用Git.Framework返回实体对象 一. Git.Framework 中提供的方法 在Git ...