更多大数据分析、建模等内容请关注公众号《bigdatamodeling

将代码封装在函数PlotKS_N里,Pred_Var是预测结果,可以是评分或概率形式;labels_Var是好坏标签,取值为1或0,1代表坏客户,0代表好客户;descending用于控制数据按违约概率降序排列,如果Pred_Var是评分,则descending=0,如果Pred_Var是概率形式,则descending=1;N表示在将数据按风险降序排列后,等分N份后计算KS值。

PlotKS_N函数返回的结果为一列表,列表中的元素依次为KS最大值、KS取最大值的人数百分位置、KS曲线对象、KS数据框。

代码如下:

 1 ####################   PlotKS_N ################################
2 PlotKS_N<-function(Pred_Var, labels_Var, descending, N){
3 # Pred_Var is prop: descending=1
4 # Pred_Var is score: descending=0
5 library(dplyr)
6
7 df<- data.frame(Pred=Pred_Var, labels=labels_Var)
8
9 if (descending==1){
10 df1<-arrange(df, desc(Pred), labels)
11 }else if (descending==0){
12 df1<-arrange(df, Pred, labels)
13 }
14
15 df1$good1<-ifelse(df1$labels==0,1,0)
16 df1$bad1<-ifelse(df1$labels==1,1,0)
17 df1$cum_good1<-cumsum(df1$good1)
18 df1$cum_bad1<-cumsum(df1$bad1)
19 df1$rate_good1<-df1$cum_good1/sum(df1$good1)
20 df1$rate_bad1<-df1$cum_bad1/sum(df1$bad1)
21
22 if (descending==1){
23 df2<-arrange(df, desc(Pred), desc(labels))
24 }else if (descending==0){
25 df2<-arrange(df, Pred, desc(labels))
26 }
27
28 df2$good2<-ifelse(df2$labels==0,1,0)
29 df2$bad2<-ifelse(df2$labels==1,1,0)
30 df2$cum_good2<-cumsum(df2$good2)
31 df2$cum_bad2<-cumsum(df2$bad2)
32 df2$rate_good2<-df2$cum_good2/sum(df2$good2)
33 df2$rate_bad2<-df2$cum_bad2/sum(df2$bad2)
34
35 rate_good<-(df1$rate_good1+df2$rate_good2)/2
36 rate_bad<-(df1$rate_bad1+df2$rate_bad2)/2
37 df_ks<-data.frame(rate_good,rate_bad)
38
39 df_ks$KS<-df_ks$rate_bad-df_ks$rate_good
40
41 L<- nrow(df_ks)
42 if (N>L) N<- L
43 df_ks$tile<- 1:L
44 qus<- quantile(1:L, probs = seq(0,1, 1/N))[-1]
45 qus<- ceiling(qus)
46 df_ks<- df_ks[df_ks$tile%in%qus,]
47 df_ks$tile<- df_ks$tile/L
48 df_0<-data.frame(rate_good=0,rate_bad=0,KS=0,tile=0)
49 df_ks<-rbind(df_0, df_ks)
50
51 M_KS<-max(df_ks$KS)
52 Pop<-df_ks$tile[which(df_ks$KS==M_KS)]
53 M_good<-df_ks$rate_good[which(df_ks$KS==M_KS)]
54 M_bad<-df_ks$rate_bad[which(df_ks$KS==M_KS)]
55
56 library(ggplot2)
57 PlotKS<-ggplot(df_ks)+
58 geom_line(aes(tile,rate_bad),colour="red2",size=1.2)+
59 geom_line(aes(tile,rate_good),colour="blue3",size=1.2)+
60 geom_line(aes(tile,KS),colour="forestgreen",size=1.2)+
61
62 geom_vline(xintercept=Pop,linetype=2,colour="gray",size=0.6)+
63 geom_hline(yintercept=M_KS,linetype=2,colour="forestgreen",size=0.6)+
64 geom_hline(yintercept=M_good,linetype=2,colour="blue3",size=0.6)+
65 geom_hline(yintercept=M_bad,linetype=2,colour="red2",size=0.6)+
66
67 annotate("text", x = 0.5, y = 1.05, label=paste("KS=", round(M_KS, 4), "at Pop=", round(Pop, 4)), size=4, alpha=0.8)+
68
69 scale_x_continuous(breaks=seq(0,1,.2))+
70 scale_y_continuous(breaks=seq(0,1,.2))+
71
72 xlab("of Total Population")+
73 ylab("of Total Bad/Good")+
74
75 ggtitle(label="KS - Chart")+
76
77 theme_bw()+
78
79 theme(
80 plot.title=element_text(colour="gray24",size=12,face="bold"),
81 plot.background = element_rect(fill = "gray90"),
82 axis.title=element_text(size=10),
83 axis.text=element_text(colour="gray35")
84 )
85
86 result<-list(M_KS=M_KS,Pop=Pop,PlotKS=PlotKS,df_ks=df_ks)
87 return(result)
88 }

接下来以实际数据为例查看该函数的运行结果。

pred_train是建模得到的预测结果,这里是概率形式:

> pred_train

[1] 0.40418112 0.35814193 0.45220572 0.53482002 0.12923573 ...

labels_train是好坏标签:

> labels_train

[1] 0 0 0 0 0 ...

函数运行的结果存放在train_ks里:

train_ks<-PlotKS_N(pred_train, labels_train, 1, 100)

我们来查看train_ks中的每一元素:

1、KS最大值

> train_ks$M_KS

[1] 0.4492765

2、KS取最大值的人数百分位置

> train_ks$Pop

[1] 0.3803191

3、KS曲线对象

R语言绘制KS曲线的更多相关文章

  1. Python绘制KS曲线

    更多大数据分析.建模等内容请关注公众号<bigdatamodeling> python实现KS曲线,相关使用方法请参考上篇博客-R语言实现KS曲线 代码如下: ############## ...

  2. R语言绘制相对性关系图

    准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角impo ...

  3. 一幅图解决R语言绘制图例的各种问题

    一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?" ...

  4. R语言绘制空间热力图

    先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始 首先安装相关包 install_packages("dev ...

  5. R语言绘制花瓣图flower plot

    R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以 ...

  6. R语言绘制沈阳地铁线路图

    ##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations< ...

  7. R语言绘制QQ图

    无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline ...

  8. R语言绘制直方图,

    直方图: 核密度函数: 练习题目1: 绘制出15位同学体重的直方图和核密度估计图,并与正态分布的概率密度函数作对比 代码如下: > w <- c(75.0, 64.0, 47.4, 66. ...

  9. R语言绘制正太分布图,并进行正太分布检验

    正态分布 判断一样本所代表的背景总体与理论正态分布是否没有显著差异的检验.   方法一概率密度曲线比较法 看样本与正太分布概率密度曲线的拟合程度,R代码如下: #画样本概率密度图s-rnorm(100 ...

随机推荐

  1. [RAM] FPGA的学习笔记——RAM

    1.RAM——随机存取存储器, 分为SRAM和DRAM. SRAM:存和取得速度快,操作简单.然而,成本高,很难做到很大.FPGA的片内存储器,就是一种SRAM,用来存放程序,以及程序执行过程中,产生 ...

  2. lqb 基础练习 数列特征

    基础练习 数列特征 时间限制:1.0s   内存限制:256.0MB     问题描述 给出n个数,找出这n个数的最大值,最小值,和. 输入格式 第一行为整数n,表示数的个数. 第二行有n个数,为给定 ...

  3. Robot Framework自动化测试环境搭建

    robotFramework是一个通用的自动化测试框架来进行验收测试和验收测试驱动开发模式,它具有易于使用的表格的测试数据和关键字测试驱动方法,其测试功能可通过实现与python或java的测试库进行 ...

  4. windows版本 MongoDB副本集搭建及开启身份验证

    ------------恢复内容开始------------ ------------恢复内容开始------------ MongoDB副本集搭建 我搭建的是一个主节点,两个副节点 构建目录结构如下 ...

  5. HashSet源码学习,基于HashMap实现

    HashSet源码学习 一).Set集合的主要使用类 1). HashSet 基于对HashMap的封装 2). LinkedHashSet 基于对LinkedHashSet的封装 3). TreeS ...

  6. PostGIS安装教程

    安装环境: win10专业版 postgresql-10.6-1-windows-x64 ---因为使用的是ArcGIS10.4版本,pg10.6对于ArcGIS10.4版本过高,建议选择安装pg9. ...

  7. day 15 内置函数二 递归 lamda sorted filter map 二分法求值

    回顾 for i in dict  #对字典进行遍历,拿到的是字典的key  今日主要内容 1. lambda 匿名函数 语法: lambda 参数:返回值 不能完成复杂的操作.只能写一行 注意: 1 ...

  8. 基于 HTML5 WebGL + VR 的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  9. Selenium+Java(五)iframe/frame多表单处理

    前言 如果网页中使用了frame,则在使用Selenium定位元素时需要切换到对应的frame,否则会定位不到需要的元素. 切换到需要切换的frame中 driver.switchTo().frame ...

  10. ganglia 一站式部署

    1    ganglia集群监测系统简介 1.1        ganglia简介 ganglia是一款为HPC(高性能计算) 集群设计的可扩展性 的分布式监控系统,它可以监视和显示集群中节点的各种状 ...