本文首发于个人博客https://kezunlin.me/post/83828674/,欢迎阅读!

compile and use libjpeg-turbo on windows 10

Series

Guide

build requirements

Build Requirements

  • cmake 2.8
  • NASM 2.13
  • Visual Studio 2015
  • libjpeg-turbo 1.5.4

(1) If using NASM, 2.05 or later is required for an x86-64 build.

(2) nasm.exe/yasm.exe should be in your PATH.

download

git clone https://github.com/libjpeg-turbo/libjpeg-turbo.git
# or
wget https://codeload.github.com/libjpeg-turbo/libjpeg-turbo/zip/master

install nasm

wget http://www.nasm.us/pub/nasm/releasebuilds/2.13.03rc1/win64/nasm-2.13.03rc1-installer-x64.exe

add C:\Program Files\NASM to env path.

compile libjpeg

cmake-gui

CMAKE_BUILD_TYPE = Release
ENABLE_SHARED = ON
CMAKE_INSTALL_PREFIX = d:/libjpeg-turbo64
NASM = C:/Program Files/NASM/nasm.exe

configure and generate sln, compile with visual studio 2015 and install.

usage with cmake

libjpegturbo-config.cmake

set(LIBJPEGTURBO_FOUND TRUE) # auto
set(LIBJPEGTURBO_ROOT_DIR "d:/libjpeg-turbo64") find_path(LIBJPEGTURBO_INCLUDE_DIR NAMES jpeglib.h turbojpeg.h PATHS "${LIBJPEGTURBO_ROOT_DIR}/include")
mark_as_advanced(LIBJPEGTURBO_INCLUDE_DIR) # show entry in cmake-gui find_library(LIBJPEGTURBO_JPEG_LIBRARY NAMES jpeg.lib PATHS "${LIBJPEGTURBO_ROOT_DIR}/lib")
mark_as_advanced(LIBJPEGTURBO_JPEG_LIBRARY) # show entry in cmake-gui find_library(LIBJPEGTURBO_TURBOJPEG_LIBRARY NAMES turbojpeg.lib PATHS "${LIBJPEGTURBO_ROOT_DIR}/lib")
mark_as_advanced(LIBJPEGTURBO_TURBOJPEG_LIBRARY) # show entry in cmake-gui # use xxx_INCLUDE_DIRS and xxx_LIBRARIES in CMakeLists.txt
set(LIBJPEGTURBO_INCLUDE_DIRS ${LIBJPEGTURBO_INCLUDE_DIR} )
set(LIBJPEGTURBO_LIBRARIES ${LIBJPEGTURBO_JPEG_LIBRARY} ${LIBJPEGTURBO_TURBOJPEG_LIBRARY} ) message( "libjpegturbo-config.cmake " ${LIBJPEGTURBO_ROOT_DIR})

CMakeLists.txt

find_package(LIBJPEGTURBO REQUIRED)
include_directories(${LIBJPEGTURBO_INCLUDE_DIRS}) add_executable (example_jpeg
${CMAKE_CURRENT_SOURCE_DIR}/src/example/example_jpeg.cpp
) target_link_libraries (example_jpeg
${LIBJPEGTURBO_LIBRARIES}
) add_executable (example_turbojpeg
${CMAKE_CURRENT_SOURCE_DIR}/src/example/example_turbojpeg.cpp
) target_link_libraries (example_turbojpeg
${LIBJPEGTURBO_LIBRARIES}
)

Example Code

jpeglib vs turbojpeg

jpeglib

  • include: #include "jpeglib.h"
  • lib: jpeg.lib
  • dll: jpeg62.dll

turbojpeg

  • include: #include "turbojpeg.h"
  • lib: turbojpeg.lib
  • dll: turbojpeg.dll

turbojpeg is (3-5x) faster than jpeglib.

jpeglib

#include <iostream>
#include <fstream>
#include <ctime> #include "jpeglib.h" typedef unsigned char BYTE; bool CompressJPEG(
/*IN*/BYTE *src, int width, int height, int depth,
/*OUT*/BYTE **dst, unsigned long *dstLen
)
{
// NOTICE: dst space must be created outside before passing in.
struct jpeg_compress_struct jcs;
struct jpeg_error_mgr jem;
jcs.err = jpeg_std_error(&jem); jpeg_create_compress(&jcs);
jpeg_mem_dest(&jcs, dst, dstLen);
jcs.image_width = width;
jcs.image_height = height;
jcs.input_components = depth;
jcs.in_color_space = JCS_RGB; jpeg_set_defaults(&jcs);
jpeg_set_quality(&jcs, 80, true); jcs.jpeg_color_space = JCS_YCbCr;
jcs.comp_info[0].h_samp_factor = 2;
jcs.comp_info[0].v_samp_factor = 2; jpeg_start_compress(&jcs, TRUE);
JSAMPROW row_pointer[1];
int row_stride = jcs.image_width*jcs.num_components;
while (jcs.next_scanline<jcs.image_height)
{
row_pointer[0] = &src[jcs.next_scanline*row_stride];
jpeg_write_scanlines(&jcs, row_pointer, 1);
}
jpeg_finish_compress(&jcs);
jpeg_destroy_compress(&jcs); return true;
} bool DeompressJPEG(
/*IN*/BYTE *src, unsigned long srcLen,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *depth
)
{
// NOTICE: dst space will be created inside.
struct jpeg_decompress_struct cinfo;
struct jpeg_error_mgr jerr; cinfo.err=jpeg_std_error(&jerr);
jpeg_create_decompress(&cinfo); jpeg_mem_src(&cinfo,src,srcLen);
jpeg_read_header(&cinfo,TRUE); jpeg_start_decompress(&cinfo);
(*width) = cinfo.output_width;
(*height) = cinfo.output_height;
(*depth) = cinfo.num_components;
(*dstLen) = (*width)*(*height)*(*depth);
BYTE *tmp_dst = new BYTE[*dstLen]; JSAMPROW row_pointer[1];
int row_stride = cinfo.image_width*cinfo.num_components;
while (cinfo.output_scanline<cinfo.output_height)
{
row_pointer[0] = &tmp_dst[cinfo.output_scanline*row_stride];
jpeg_read_scanlines(&cinfo,row_pointer,1);
}
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
*dst = tmp_dst; return true;
} void compress_jpeg_to_file(
/*IN*/BYTE *src,int width, int height, int components, int color_space,int quality,
/*OUT*/char *dst_filename
)
{
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
FILE *outfile; /* target file */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
if ((outfile = fopen(dst_filename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", dst_filename);
exit(1);
}
jpeg_stdio_dest(&cinfo, outfile); /* Step 3: set parameters for compression */ /* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = width; /* image width and height, in pixels */
cinfo.image_height = height;
cinfo.input_components = components; /* # of color components per pixel */
cinfo.in_color_space = (J_COLOR_SPACE)color_space; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = cinfo.image_width * cinfo.input_components; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &src[cinfo.next_scanline * row_stride];
(void)jpeg_write_scanlines(&cinfo, row_pointer, 1);
} /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
fclose(outfile); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo); /* And we're done! */
} void compress_jpeg_to_mem(
/*IN*/BYTE *src,int width, int height, int components, int color_space,int quality,
/*OUT*/BYTE **dst, unsigned long *dstLen
)
{
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
//FILE *outfile; /* target file */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
//jpeg_stdio_dest(&cinfo, outfile);
jpeg_mem_dest(&cinfo, dst, dstLen); /* Step 3: set parameters for compression */ /* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = width; /* image width and height, in pixels */
cinfo.image_height = height;
cinfo.input_components = components; /* # of color components per pixel */
cinfo.in_color_space = (J_COLOR_SPACE)color_space; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = cinfo.image_width * cinfo.input_components; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &src[cinfo.next_scanline * row_stride];
(void)jpeg_write_scanlines(&cinfo, row_pointer, 1);
} /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
//fclose(outfile); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo); /* And we're done! */
} int decompress_jpeg_from_file(
/*IN*/char *src_filename,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *components,int *color_space)
{
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
FILE *infile; /* source file */
int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/ if ((infile = fopen(src_filename, "rb")) == NULL) {
fprintf(stderr, "can't open %s\n", src_filename);
return 0;
} /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(&cinfo, infile); /* Step 3: read file parameters with jpeg_read_header() */ (void)jpeg_read_header(&cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.txt for more info.
*/ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/ /* Step 5: Start decompressor */ (void)jpeg_start_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/ /* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
row_stride = cinfo.output_width * cinfo.output_components;
/* Make a one-row-high sample array that will go away when done with image */ /* Set output fields */
(*width) = cinfo.output_width;
(*height) = cinfo.output_height;
(*components) = cinfo.num_components;
(*color_space) = cinfo.jpeg_color_space;
(*dstLen) = (*width)*(*height)*(*components);
BYTE *tmp_dst = new BYTE[*dstLen]; /* Allocate out buffer */ JSAMPROW row_pointer[1];
row_stride = cinfo.output_width*cinfo.num_components;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while (cinfo.output_scanline < cinfo.output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &tmp_dst[cinfo.output_scanline*row_stride];
(void)jpeg_read_scanlines(&cinfo, row_pointer, 1);
}
(*dst) = tmp_dst; // assign to outside dst /* Step 7: Finish decompression */ (void)jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo); /* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
fclose(infile); /* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/ /* And we're done! */
return 1;
} int decompress_jpeg_from_mem(
/*IN*/BYTE *src, unsigned long srcLen,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *components, int *color_space)
{
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
//FILE *infile; /* source file */
int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/ /*
if ((infile = fopen(src_filename, "rb")) == NULL) {
fprintf(stderr, "can't open %s\n", src_filename);
return 0;
}
*/ /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ //jpeg_stdio_src(&cinfo, infile);
jpeg_mem_src(&cinfo, src, srcLen); /* Step 3: read file parameters with jpeg_read_header() */ (void)jpeg_read_header(&cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.txt for more info.
*/ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/ /* Step 5: Start decompressor */ (void)jpeg_start_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/ /* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
row_stride = cinfo.output_width * cinfo.output_components;
/* Make a one-row-high sample array that will go away when done with image */ /* Set output fields */
(*width) = cinfo.output_width;
(*height) = cinfo.output_height;
(*components) = cinfo.num_components;
(*color_space) = cinfo.jpeg_color_space;
(*dstLen) = (*width)*(*height)*(*components);
BYTE *tmp_dst = new BYTE[*dstLen]; /* Allocate out buffer */ JSAMPROW row_pointer[1];
row_stride = cinfo.output_width*cinfo.num_components;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while (cinfo.output_scanline < cinfo.output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &tmp_dst[cinfo.output_scanline*row_stride];
(void)jpeg_read_scanlines(&cinfo, row_pointer, 1);
}
(*dst) = tmp_dst; // assign to outside dst /* Step 7: Finish decompression */ (void)jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo); /* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
//fclose(infile); /* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/ /* And we're done! */
return 1;
} void test_compress_to_file()
{
int width = 2000;
int height = 1000;
int channel = 1; int nImgSize = width * height * channel;
unsigned char * pRawImage = new unsigned char[nImgSize]; // new buffer
memset(pRawImage, 0, nImgSize);
for (int i = 100; i < 300; i++) // row [height]
{
for (int j = 0; j < width; j++) // column [width]
{
*(pRawImage + width * i + j) = (char)255;
}
} // do work.
compress_jpeg_to_file(
pRawImage,width,height,channel,J_COLOR_SPACE::JCS_GRAYSCALE,90,
"../image/compress/to_file.jpg"
); delete[] pRawImage;
} void test_compress_to_mem()
{
int width = 2000;
int height = 1000;
int channel = 1; int nImgSize = width * height * channel;
unsigned char * pRawImage = new unsigned char[nImgSize]; // new buffer
memset(pRawImage, 0, nImgSize);
for (int i = 100; i < 300; i++) // row [height]
{
for (int j = 0; j < width; j++) // column [width]
{
*(pRawImage + width * i + j) = (char)255;
}
} // (1) new dst space outside **compress** function
// pOutBuffer's nImgSize must > lOutSize to contain valid dst buffer.
unsigned char *pOutBuffer = new unsigned char[nImgSize]; // new dst buffer
unsigned long lOutSize = 0; // (2) compress to mem
compress_jpeg_to_mem(
pRawImage, width, height, channel, J_COLOR_SPACE::JCS_GRAYSCALE, 90,
&pOutBuffer, &lOutSize
); std::cout << "orginal size = " << nImgSize << std::endl;
std::cout << "compress size = "<<lOutSize << std::endl; // 30403 // (3) write mem buffer to file
const char* dst_filename = "../image/compress/mem_to_file.jpg";
FILE *outfile;
if ((outfile = fopen(dst_filename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", dst_filename);
exit(1);
}
fwrite(pOutBuffer,lOutSize,1,outfile);
fclose(outfile); delete[] pOutBuffer; delete[] pRawImage;
} void test_decompress_from_file()
{
char* src_filename = "../image/compress/to_file.jpg";
BYTE *dst = NULL; // raw image buffer allocated inside **decompress** function
unsigned long dstLen;
int width, height, channel,color_space; // allocate dst inside function
decompress_jpeg_from_file(
src_filename,
&dst,&dstLen,&width,&height,&channel,&color_space
); std::cout << dstLen << std::endl;
std::cout << width << std::endl;
std::cout << height << std::endl;
std::cout << channel << std::endl;
std::cout << color_space << std::endl; // use raw image buffer
// do work.
compress_jpeg_to_file(
dst, width, height, channel, J_COLOR_SPACE::JCS_GRAYSCALE, 90,
"../image/compress/decompress_from_file_and_then_to_file.jpg"
); // free allocated memory
if (dst != NULL)
{
delete[] dst;
}
} void test_decompress_from_mem()
{
// (0) create memory src buffer
char* src_filename = "../image/compress/to_file.jpg";
std::ifstream ifs(src_filename, std::ios_base::binary | std::ios_base::in);
ifs.seekg(0, std::ios::end);
uint64_t size = ifs.tellg();
ifs.seekg(0, std::ios::beg); //std::vector<char> buffer(size);
//ifs.read(&buffer.front(), size);
BYTE *src = new BYTE[size];
ifs.read((char*)src, size); // (1) decompress from mem
BYTE *dst = NULL; // raw image buffer allocated inside **decompress** function
unsigned long dstLen;
int width, height, channel, color_space; // allocate dst inside function
decompress_jpeg_from_mem(
src,size,
&dst, &dstLen, &width, &height, &channel, &color_space
); std::cout << dstLen << std::endl;
std::cout << width << std::endl;
std::cout << height << std::endl;
std::cout << channel << std::endl;
std::cout << color_space << std::endl; // (2) use raw image buffer
// do work.
compress_jpeg_to_file(
dst, width, height, channel, J_COLOR_SPACE::JCS_GRAYSCALE, 90,
"../image/compress/decompress_from_mem_and_then_to_file.jpg"
);
// free dst allocated memory
if (dst != NULL)
{
delete[] dst;
} // free src memory buffer
delete[] src;
} int IMAGE_COUNT = 10000;
void test_compress_time()
{
int width = 2000;
int height = 1000;
int channel = 1; unsigned long srcLen = width * height * channel;
unsigned char * src = new unsigned char[srcLen]; // new buffer
memset(src, 0, srcLen);
for (int i = 100; i < 300; i++) // row [height]
{
for (int j = 0; j < width; j++) // column [width]
{
*(src + width * i + j) = (char)255;
}
} int quality = 90;
time_t start = time(NULL); for (int i = 0; i < IMAGE_COUNT; i++)
{
// (1) new dst space outside **compress** function
// pOutBuffer's nImgSize must > lOutSize to contain valid dst buffer.
unsigned char *pOutBuffer = new unsigned char[srcLen]; // new dst buffer
unsigned long lOutSize = 0; // (2) compress to mem
compress_jpeg_to_mem(
src, width, height, channel, J_COLOR_SPACE::JCS_GRAYSCALE, 90,
&pOutBuffer, &lOutSize
); // (3) free memory
delete[] pOutBuffer;
} time_t end = time(NULL);
std::cout << "======================================" << std::endl;
double ms = (double)(end - start) * 1000;
std::cout << " use times = " << ms << "ms; avg = " << ms / IMAGE_COUNT << " ms; " << " #" << IMAGE_COUNT << std::endl;
// avg = 4.9 ms #10000 for jpeg
// avg = 4.5 ms #10000 for turbojpeg
std::cout << "======================================" << std::endl; delete[] src;
} void test_decompress_time()
{ } int main(int argc, char* argv[])
{
// 30403, 30153
//test_compress_to_file();
//test_compress_to_mem();
//test_decompress_from_file();
//test_decompress_from_mem(); test_compress_time();
return 0;
}

turbojpeg

#include <iostream>
#include <fstream>
#include <vector>
#include <ctime> #include "turbojpeg.h" typedef unsigned char BYTE; void save_buffer_to_file(const char *filename,BYTE* buffer,unsigned long size)
{
FILE *outfile;
if ((outfile = fopen(filename, "wb")) != NULL) {
fwrite(buffer, size, 1, outfile);
fclose(outfile);
}
else
{
fprintf(stderr, "can't open %s\n", filename);
exit(1);
}
} /*
* Compress image buffer to a JPEG image in memory.
*
* @@input
*
* @param : [src] pointer to an image buffer that will be compressed.
* @param :
*
* @@output
* @param : [dst] pointer to an image buffer that will receive the compressed image.
This variable should be passed in with NULL, and will be allocated by
TurboJPEG(either by tjAlloc(),or by the Compress/Decompress) method
So we need to use tjFree() to free memory allocated after we are done
working on dst.
* @param : [dstLen] size of dst image buffer in bytes. This should be passed in with
value 0.
*
* @@return
* @param void
*
* @@demo
*
BYTE *dst = NULL;
unsigned long dstLen = 0;
tj_compress_jpeg_to_mem(
....,
&dst,&dstLen
)
*/
void tj_compress_jpeg_to_mem(
/*IN*/BYTE *src, int width, int height, int pixelFormat, int subsamp, int quality, int flags,
/*OUT*/BYTE **dst, unsigned long *dstLen
)
{
// NOTICE : we must use tjAlloc() and tjFree() to allocate dst buffer.
// for compress, we let **tjCompress2** allocate dst buffer.
// for decompress, we allocate dst buffer by ourself. tjhandle handle = tjInitCompress();
//tjCompress2(handle, src, width, 0/*pitch*/, height, TJPF::TJPF_GRAY,
// &pOutBuffer, &lOutSize, TJSAMP::TJSAMP_GRAY, quality,
// TJFLAG_FASTDCT); //TJFLAG_FASTDCT tjCompress2(
handle, src, width, 0/*pitch*/, height, pixelFormat,
dst, dstLen, subsamp, quality, flags
); tjDestroy(handle);
} void tj_compress_gray_jpeg_to_mem(
/*IN*/BYTE *src, int width, int height, int quality,
/*OUT*/BYTE **dst, unsigned long *dstLen
)
{
int pixelFormat = TJPF::TJPF_GRAY;
int subsamp = TJSAMP::TJSAMP_GRAY;
int flags = TJFLAG_FASTDCT; tj_compress_jpeg_to_mem(
src, width, height, pixelFormat, subsamp, quality, flags,
dst, dstLen
);
} void tj_compress_gray_jpeg_to_file(
/*IN*/BYTE *src, int width, int height, int quality,
/*OUT*/const char* dst_filename
)
{
int pixelFormat = TJPF::TJPF_GRAY;
int subsamp = TJSAMP::TJSAMP_GRAY;
int flags = TJFLAG_FASTDCT; // (1) init dst memory buffer
BYTE *dst = NULL; // memory allocated by TurboJPEG tjAlloc()
unsigned long dstLen = 0; // (2) compress
tj_compress_jpeg_to_mem(
src, width, height, pixelFormat, subsamp, quality, flags,
&dst, &dstLen
); // (3) write buffer to file
save_buffer_to_file(dst_filename, dst, dstLen); // (4) free memory allocated by TurboJPEG
tjFree(dst);
} /*
* Compress image buffer to a JPEG image in memory.
*
* @@input
*
* @param : [src] pointer to an image buffer that will be compressed.
* @param :
*
* @@output
* @param : [dst] pointer to an image buffer that will receive the decompressed image.
This variable should be passed in with NULL, and will be allocated in
method by new[]. So we need to use delete[] to free memory allocated
after we are done working on dst.
* @param : [dstLen] size of dst image buffer in bytes. This should be passed in with
value 0.
*
* @@return
* @param void
*
* @@demo
*
BYTE *dst = NULL;
unsigned long dstLen = 0;
tj_decompress_jpeg_from_mem(
....,
&dst,&dstLen
)
*/
void tj_decompress_jpeg_from_mem(
/*IN*/BYTE *src, unsigned long srcLen,int tjPixelFormat,int flags,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *components, int *jpegSubsamp, int *jpegColorspace)
{
tjhandle handle = tjInitDecompress();
tjDecompressHeader3(handle, src, srcLen, width, height, jpegSubsamp, jpegColorspace); (*components) = tjPixelSize[(TJPF)tjPixelFormat]; // 1 for GRAY,3 for RGB
(*dstLen) = (*width) * (*height) * (*components); BYTE *tmp_dst = new BYTE[*dstLen]; /* Allocate out buffer */ tjDecompress2(
handle, src, srcLen,
tmp_dst, *width, 0/*pitch*/, *height, tjPixelFormat, flags
);
tjDestroy(handle); (*dst) = tmp_dst; // pass dst out
} void tj_decompress_gray_jpeg_from_mem(
/*IN*/BYTE *src, unsigned long srcLen,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *components
)
{
int pixelFormat = TJPF::TJPF_GRAY;
int flags = TJFLAG_ACCURATEDCT;
int subsamp,colorspace; // no use for now (3 TJSAMP::TJSAMP_GRAY, 2 TJCS::TJCS_GRAY) tj_decompress_jpeg_from_mem(
src, srcLen, pixelFormat, flags,
dst, dstLen, width, height, components, &subsamp, &colorspace
);
} void tj_decompress_gray_jpeg_from_file(
/*IN*/const char* src_filename,
/*OUT*/BYTE **dst, unsigned long *dstLen, int *width, int *height, int *components
)
{
// (0) read src memory buffer from file
std::ifstream ifs(src_filename, std::ios_base::binary | std::ios_base::in);
ifs.seekg(0, std::ios::end);
uint64_t srcLen = ifs.tellg();
ifs.seekg(0, std::ios::beg); BYTE *src = new BYTE[srcLen];
ifs.read((char*)src, srcLen); // (2) decompress
int pixelFormat = TJPF::TJPF_GRAY;
int flags = TJFLAG_ACCURATEDCT;
int subsamp, colorspace; // no use for now (3 TJSAMP::TJSAMP_GRAY, 2 TJCS::TJCS_GRAY) tj_decompress_jpeg_from_mem(
src, srcLen, pixelFormat, flags,
dst, dstLen, width, height, components, &subsamp, &colorspace
); // (3) free src memory buffer
delete[] src; // (4) pass out dst buffer
} void test_compress()
{
int width = 2000;
int height = 1000;
int channel = 1; unsigned long srcLen = width * height * channel;
unsigned char * src = new unsigned char[srcLen]; // new buffer
memset(src, 0, srcLen);
for (int i = 100; i < 300; i++) // row [height]
{
for (int j = 0; j < width; j++) // column [width]
{
*(src + width * i + j) = (char)255;
}
} //========================================================================
// compress to file
int quality = 90;
const char* filename = "../image/compress/tj_mem_to_file.jpg";
tj_compress_gray_jpeg_to_file(src, width, height, quality, filename);
//======================================================================== delete[] src;
} void test_decompress()
{
// (0) create memory src buffer
char* src_filename = "../image/compress/to_file.jpg"; // (2) decompress
BYTE *dst = NULL; // allocated inside **decompress** function by new[].
unsigned long dstLen = 0;
int width, height, components; tj_decompress_gray_jpeg_from_file(
src_filename,
&dst, &dstLen, &width, &height, &components
); std::cout << dstLen << std::endl;
std::cout << width << std::endl;
std::cout << height << std::endl;
std::cout << components << std::endl; // (3) use dst buffer
//========================================================================
// compress to file
int quality = 90;
const char* dst_filename = "../image/compress/tj_decompress_to_mem_to_file.jpg";
tj_compress_gray_jpeg_to_file(dst, width, height, quality, dst_filename);
//======================================================================== // (4) free dst buffer
delete[] dst;
} int IMAGE_COUNT = 10000;
void test_compress_time()
{
int width = 2000;
int height = 1000;
int channel = 1; unsigned long srcLen = width * height * channel;
unsigned char * src = new unsigned char[srcLen]; // new buffer
memset(src, 0, srcLen);
for (int i = 100; i < 300; i++) // row [height]
{
for (int j = 0; j < width; j++) // column [width]
{
*(src + width * i + j) = (char)255;
}
} int quality = 90;
time_t start = time(NULL); for (int i = 0; i < IMAGE_COUNT; i++)
{
//========================================================================
// (1) init dst memory buffer
BYTE *dst = NULL; // memory allocated by TurboJPEG tjAlloc()
unsigned long dstLen = 0; // (2) compress
tj_compress_gray_jpeg_to_mem(
src, width, height, quality,
&dst, &dstLen
); // (3) free memory allocated by TurboJPEG
tjFree(dst);
//========================================================================
} time_t end = time(NULL);
std::cout << "======================================" << std::endl;
double ms = (double)(end - start) * 1000;
std::cout << " use times = " << ms << "ms; avg = " << ms / IMAGE_COUNT << " ms; " << " #" << IMAGE_COUNT << std::endl;
// avg = 4.9 ms #10000 for jpeg
// avg = 4.5 ms #10000 for turbojpeg
std::cout << "======================================" << std::endl; delete[] src;
} void test_decompress_time()
{ } int main(int argc, char* argv[])
{
//test_compress();
//test_decompress();
test_compress_time();
return 0;
}

Reference

History

  • 20180201: created.
  • 20180202: add example code.

Copyright

windows 10上源码编译libjpeg-turbo和使用教程 | compile and use libjpeg-turbo on windows 10的更多相关文章

  1. windows 10 上源码编译OpenCV并支持CUDA | compile opencv with CUDA support on windows 10

    本文首发于个人博客https://kezunlin.me/post/6580691f/,欢迎阅读! compile opencv with CUDA support on windows 10 Ser ...

  2. windows 10上源码编译dlib教程 | compile dlib on windows 10

    本文首发于个人博客https://kezunlin.me/post/654a6d04/,欢迎阅读! compile dlib on windows 10 Series Part 1: compile ...

  3. windows 10 上源码编译boost 1.66.0 | compile boost 1.66.0 from source on windows 10

    本文首发于个人博客https://kezunlin.me/post/854071ac/,欢迎阅读! compile boost 1.66.0 from source on windows 10 Ser ...

  4. windows 10 上源码编译opengv | compile opengv on windows 10 from source

    本文首发于个人博客https://kezunlin.me/post/51cd9fa0/,欢迎阅读! compile opengv on windows 10 from source Series co ...

  5. Windows 10上源码编译glog和gflags 编写glog-config.cmake和gflags-config.cmake | compile glog and glags on windows from source

    本文首发于个人博客https://kezunlin.me/post/bb64e398/,欢迎阅读! compile glog v0.3.5 and glags on windows from sour ...

  6. Windows 10上源码编译Poco并编写httpserver和tcpserver | compile and install poco cpp library on windows

    本文首发于个人博客https://kezunlin.me/post/9587bb47/,欢迎阅读! compile and install poco cpp library on windows Se ...

  7. [Part 4] 在Windows 10上源码编译PCL 1.8.1支持VTK和QT,可视化三维点云

    本文首发于个人博客https://kezunlin.me/post/2d809f92/,欢迎阅读! Part-4: Compile pcl with vtk qt5 support from sour ...

  8. [Windows篇] 在windows 10上源码编译gtest 并编写CMakeLists.txt

    本文首发于个人博客https://kezunlin.me/post/aca50ff8/,欢迎阅读! compile gtest on windows 10 Guide compile gtest on ...

  9. CentOS 7上源码编译安装和配置LNMP Web+phpMyAdmin服务器环境

    CentOS 7上源码编译安装和配置LNMP Web+phpMyAdmin服务器环境 什么是LNMP? LNMP(别名LEMP)是指由Linux, Nginx, MySQL/MariaDB, PHP/ ...

随机推荐

  1. HTTP协议详解(一)——初识HTTP及请求

    何为HTTP(超文本传输协议)? 协议,即约定俗成的规范.HTTP则是浏览器与服务器之间交流的一种规范.HTTP基于TCP/IP协议,属于应用层的协议. 为什么Web应用不使用TCP或者UDP协议呢? ...

  2. 如何利用C# Roslyn编译器写一个简单的代码提示/错误检查?

    OK, 废话不多说,这些天在写C#代码时突然对于IDE提示有了一些想法,之前也有了解过,不过并没有深入. 先看个截图: 一段再简单不过的代码了,大家注意看到 count 字段下面的绿色波浪线了吗,我们 ...

  3. unity发布ios高通AR的问题

    1)缺少引用,无法找到vuforiaBehavior 原因:Windows下的工程,直接考到mac下,导致unity自带插件(2017)有问题 解决:首先在playerSettings-xrSetti ...

  4. Texture to texture2D以及texture2D像素反转

    private void SaveRenderTextureToPNG(Texture inputTex, string file) { RenderTexture temp = RenderText ...

  5. redis is configured to save RDB snapshots

    Redis被配置为保存数据库快照,但它目前不能持久化到硬盘.用来修改集合数据的命令不能用 原因: 强制关闭Redis 快照导致不能持久化. 解决方法: 运行 config set stop-write ...

  6. java和python对比

    一:解释性和编译型 梳理 编译型:源代码经过编译直接变为二进制的机器语言,每次都可以直接重新运行不需要翻译.典型的就是c语言. 解释性:java和python都是解释型,源代码经过编译变为字节码文件, ...

  7. Nexus 离线更新中央仓库索引

    nexus可以在线更新中央仓库索引,但是更新速度慢,而且很有可能下载的索引不全.下面介绍一种离线更新中央仓库索引的方式,速度快并且可靠. 1.访问http://repo.maven.apache.or ...

  8. 《JavaScript设计模式与开发实践》-- 发布-订阅模式

    详情个人博客:https://shengchangwei.github.io/js-shejimoshi-fabudingyue/ 发布-订阅模式 1.定义 发布-订阅模式:发布-订阅模式又叫观察者模 ...

  9. Java IO编程——转换流

    所谓的转换流指的是可以实现字节流与字符流操作的功能转换,例如:进行输出的时候OutputStream需要将内容变为字节数组后才可以进行输出,而Writer可以直接输出字符串,这一点是方便的,所以很多人 ...

  10. C语言1作业5

    问题 答案 这个作业属于那个课程 C语言程序设计1 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-2 我在这个课程的目的是 学习并掌握C ...