手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。
必备知识
Haar-like
Haar-like百科释义。通俗的来讲,就是作为人脸特征即可。
Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。
opencv api
要想使用opencv,就必须先知道其能干什么,怎么做。于是API的重要性便体现出来了。就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了。
读取图片
只需要给出待操作的图片的路径即可。
import cv2
image = cv2.imread(imagepath)
灰度转换
灰度转换的作用就是:转换成灰度的图片的计算强度得以降低。
import cv2
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
画图
opencv 的强大之处的一个体现就是其可以对图片进行任意编辑,处理。
下面的这个函数最后一个参数指定的就是画笔的大小。
import cv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
显示图像
编辑完的图像要么直接的被显示出来,要么就保存到物理的存储介质。
import cv2
cv2.imshow("Image Title",image)
获取人脸识别训练数据看似复杂,其实就是对于人脸特征的一些描述,这样opencv在读取完数据后很据训练中的样品数据,就可以感知读取到的图片上的特征,进而对图片进行人脸识别。
import cv2
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
里卖弄的这个xml文件,就是opencv在GitHub上共享出来的具有普适的训练好的数据。我们可以直接的拿来使用。
训练数据参考地址:https://github.com/opencv/opencv/tree/master/data/haarcascades
探测人脸
说白了,就是根据训练的数据来对新图片进行识别的过程。
import cv2 # 探测图片中的人脸 faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
我们可以随意的指定里面参数的值,来达到不同精度下的识别。返回值就是opencv对图片的探测结果的体现。
处理人脸探测的结果
结束了刚才的人脸探测,我们就可以拿到返回值来做进一步的处理了。但这也不是说会多么的复杂,无非添加点特征值罢了。
import cv2
print "发现{0}个人脸!".format(len(faces))
for(x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
实例
有了刚才的基础,我们就可以完成一个简单的人脸识别的小例子了。
下面的这张图片将作为我们的检测依据。

人脸检测代码
# coding:utf-8
import sys reload(sys)
sys.setdefaultencoding('utf8')
# __author__ = '郭 璞'
# __date__ = '2016/9/5'
# __Desc__ = 人脸检测小例子,以圆圈圈出人脸
import cv2
# 待检测的图片路径
imagepath = r'./heat.jpg' # 获取训练好的人脸的参数数据,这里直接从GitHub上使用默认值
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml') # 读取图片
image = cv2.imread(imagepath)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # 探测图片中的人脸
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
) print "发现{0}个人脸!".format(len(faces)) for(x,y,w,h) in faces:
# cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2) cv2.imshow("Find Faces!",image)
cv2.waitKey(0)
输出图片:

输出结果:
D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py
发现3个人脸!
详情见:案例参考
总结
回顾一下,这次的实验就是简单的对opencv的常用的api的使用,重点在于训练数据的使用和人脸探测的处理。
搜索887934385交流群,群内分享干货最后,感谢观看!
手把手教你如何用 OpenCV + Python 实现人脸检测的更多相关文章
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- opencv+python实时人脸检测、磨皮
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...
- OpenCV例程实现人脸检测
前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试 ...
- OpenCV入门指南----人脸检测
本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸 ...
- opencv 美白磨皮人脸检测<转>
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理, ...
- OpenCV神技——人脸检测,猫脸检测
简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 ...
- Android—基于OpenCV+Android实现人脸检测
导读 OpenCV 是一个开源的跨平台计算机视觉库, 采C++语言编写,实现了图像处理和计算机视觉方面的很多通用算法,同时也提供对Python,Java,Android等的支持,这里利用Android ...
- 使用python实现人脸检测
人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸 ...
随机推荐
- 理解 Flutter 中的 Key
概览 在 Flutter 中,大概大家都知道如何更新界面视图: 通过修改 Stata 去触发 Widget 重建,触发和更新的操作是 Flutter 框架做的. 但是有时即使修改了 State,Flu ...
- 用js传递当前页面的url,丢失了&后面的参数 解决办法
问题:因为登陆是用ajax传值的,在哪个页面点击登陆的,登陆成功跳到再跳回那个页面,之前直接传递的是 /index_do.php?gourl=" +location.href这样传递的,但是 ...
- MySQL Online DDL与DML并发阻塞关系总结
MySQL DDL操作执行的三种方式 1,INPLACE,在进行DDL操作时,不影响表的读&写,可以正常执行表上的DML操作,避免与COPY方法相关的磁盘I/O和CPU周期,从而最小化数据库的 ...
- dbms_profiler
@?/rdbms/admin/profload.sql @?/rdbms/admin/proftab.sql CREATE or replace PUBLIC SYNONYM plsql_profil ...
- reduce方法实现累加累乘的方式
reduce函数对参数序列中的值进行积累,第二个参数可以为:str,tuple,list,代码示例如下: from functools import reduce#实现列表内的所有数的累加,即第一步x ...
- IPv6升级测试指南(Android/iOS/Mac)
目录 我们升级到IPv6的原因 测试的时候的注意要点 Android/IOS/MAC测试总结 Android测试IPv6的方法 IOS端测试IPv6的方法 MAC浏览器端测试IPv6的方法 升级IPV ...
- Web安全测试学习笔记-DVWA-图片上传
很多网站都有上传资源(图片或者文件)的功能,资源上传后一般会存储在服务器的一个文件夹里面,如果攻击者绕过了上传时候的文件类型验证,传了木马或者其他可执行的代码上去,那服务器就危险了. 我用DVWA的文 ...
- 常用类-Excel-使用Aspose.Cells插件
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Xm ...
- django简单密码加密和效验
通过django自带的类库,来加密解密很方便,下面来简单介绍下: 导入包: from django.contrib.auth.hashers import make_password, check_p ...
- ES6-数字操作,判断是否是整数,判断最大值最小值
S中只有一种类型数,即64位(1bit 的符号位,11bits 的指数部分 ,以及52bits 的小数部分)双精度浮点数,当整数数值过大时,就会发生精度丢失. 所谓安全整数即能够唯一确定的数字,即能够 ...