1. 什么是GRU

在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系。

门控循环神经⽹络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较⼤的依赖关系。它通过可以学习的⻔来控制信息的流动。其中,门控循环单元(gatedrecurrent unit,GRU)是⼀种常⽤的门控循环神经⽹络。

2. ⻔控循环单元

2.1 重置门和更新门

GRU它引⼊了重置⻔(reset gate)和更新⻔(update gate)的概念,从而修改了循环神经⽹络中隐藏状态的计算⽅式。

门控循环单元中的重置⻔和更新⻔的输⼊均为当前时间步输⼊ \(X_t\) 与上⼀时间步隐藏状态\(H_{t-1}\),输出由激活函数为sigmoid函数的全连接层计算得到。 如下图所示:

具体来说,假设隐藏单元个数为 h,给定时间步 t 的小批量输⼊ \(X_t\in_{}\mathbb{R}^{n*d}\)(样本数为n,输⼊个数为d)和上⼀时间步隐藏状态 \(H_{t-1}\in_{}\mathbb{R}^{n*h}\)。重置⻔ \(H_t\in_{}\mathbb{R}^{n*h}\) 和更新⻔ \(Z_t\in_{}\mathbb{R}^{n*h}\) 的计算如下:

\[R_t=\sigma(X_tW_{xr}+H_{t-1}W_{hr}+b_r)\]

\[Z_t=\sigma(X_tW_{xz}+H_{t-1}W_{hz}+b_z)\]

sigmoid函数可以将元素的值变换到0和1之间。因此,重置⻔ \(R_t\) 和更新⻔ \(Z_t\) 中每个元素的值域都是[0, 1]。

2.2 候选隐藏状态

接下来,⻔控循环单元将计算候选隐藏状态来辅助稍后的隐藏状态计算。我们将当前时间步重置⻔的输出与上⼀时间步隐藏状态做按元素乘法(符号为)。如果重置⻔中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上⼀时间步的隐藏状态。如果元素值接近1,那么表⽰保留上⼀时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输⼊连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态,其所有元素的值域为[-1,1]。

具体来说,时间步 t 的候选隐藏状态 \(\tilde{H}\in_{}\mathbb{R}^{n*h}\) 的计算为:

\[\tilde{H}_t=tanh(X_tW_{xh}+(R_t⊙H_{t-1})W_{hh}+b_h)\]

从上⾯这个公式可以看出,重置⻔控制了上⼀时间步的隐藏状态如何流⼊当前时间步的候选隐藏状态。而上⼀时间步的隐藏状态可能包含了时间序列截⾄上⼀时间步的全部历史信息。因此,重置⻔可以⽤来丢弃与预测⽆关的历史信息。

2.3 隐藏状态

最后,时间步t的隐藏状态 \(H_t\in_{}\mathbb{R}^{n*h}\) 的计算使⽤当前时间步的更新⻔\(Z_t\)来对上⼀时间步的隐藏状态 \(H_{t-1}\) 和当前时间步的候选隐藏状态 \(\tilde{H}_t\) 做组合:

值得注意的是,更新⻔可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,如上图所⽰。假设更新⻔在时间步 \(t^{′}到t(t^{′}<t)\) 之间⼀直近似1。那么,在时间步 \(t^{′}到t\) 间的输⼊信息⼏乎没有流⼊时间步 t 的隐藏状态\(H_t\)实际上,这可以看作是较早时刻的隐藏状态 \(H_{t^{′}-1}\) 直通过时间保存并传递⾄当前时间步 t。这个设计可以应对循环神经⽹络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较⼤的依赖关系。

我们对⻔控循环单元的设计稍作总结:

  • 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
  • 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。

3. 代码实现GRU

MNIST--GRU实现

机器学习通俗易懂系列文章

4. 参考文献

《动手学--深度学习》


作者:@mantchs

GitHub:https://github.com/NLP-LOVE/ML-NLP

欢迎大家加入讨论!共同完善此项目!群号:【541954936】

三步理解--门控循环单元(GRU),TensorFlow实现的更多相关文章

  1. 门控循环单元(GRU)与 LSTM 的区别

    29 November 2019 14:48 GRU is a popular variant of LSTM which replaces the forget gate and the input ...

  2. 序列模型(4)----门控循环单元(GRU)

    一.GRU 其中, rt表示重置门,zt表示更新门. 重置门决定是否将之前的状态忘记.(作用相当于合并了 LSTM 中的遗忘门和传入门) 当rt趋于0的时候,前一个时刻的状态信息ht−1会被忘掉,隐藏 ...

  3. GRU门控制循环单元【转载】

    转自:https://www.infoq.cn/article/sliced-recurrent-neural-networks 1.门控循环单元 GRU GRU 由 reset gate r 和 u ...

  4. [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...

  5. 十 | 门控循环神经网络LSTM与GRU(附python演练)

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...

  6. Retrofit三步理解之中的一个 ------------------ Retrofit的简单使用总结

    概念: Retrofit一開始看起来使用比較麻烦是由于它和其它网络请求框架不同的是它是通过注解和interface来进行网络请求,而且须要对返回数据进行特殊处理才干使用. 1. 简单使用,请求返回St ...

  7. 技能|三次简化一张图:一招理解LSTM/GRU门控机制

    作者 | 张皓 引言 RNN是深度学习中用于处理时序数据的关键技术, 目前已在自然语言处理, 语音识别, 视频识别等领域取得重要突破, 然而梯度消失现象制约着RNN的实际应用.LSTM和GRU是两种目 ...

  8. VC控件自绘制三步曲

    http://blog.csdn.net/lijie45655/article/details/6362441 实现自定义绘制的三步曲 既然您已经了解了绘制控件可用的各种选项(包括使用自定义绘制的好处 ...

  9. 太深了,梯度传不下去,于是有了highway。 干脆连highway的参数都不要,直接变残差,于是有了ResNet。 强行稳定参数的均值和方差,于是有了BatchNorm。RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM。 LSTM简化一下,有了GRU。

    请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及 ...

随机推荐

  1. 完全平方数(C语言实现)

    一.题目 一个整数,它加上100后是一个完全平方数请问该数是多少? 二.程序分析 1.题目中没有限定这个整数的范围,因此,可以在代码中#define scope 10000,即使用scope变量定义一 ...

  2. android_activity_研究(二)

    这次开始玩玩活动的生命周期.废话不说,先搞个小应用,大体思路是:主界面有两个按钮,一个按钮按下后,出现第二个界面:另一个按钮按下后,出现第三个界面,真他妈简单. 一.主界面: 1. 主界面布局xml文 ...

  3. [sublime3] 在linux下的终端中使用sublime3打开文件

    通过ln命令创建软连接实现 echo $PATH 查看路径 例 我的路径是: /home/rh/anaconda3/bin:/home/rh/bin:/home/rh/.local/bin:/usr/ ...

  4. 浅入深出Vue:代码整洁之去重

    在开始本篇的主题之前,让我们把上次遗留下来的问题都清理一下: 将其他组件中 axios 请求的地方封装起来. 这里就不把代码放在开头了,相关代码都放在文末,有兴趣了解的童鞋可以先往下翻. 好了, 我们 ...

  5. JS+Jquery自定义格式导出HTML为Word(下列插件同样可以用于Excel导出)

    这里的word导出主要采用了jquery.wordexport.js.FileSaver.js,做功能之前我也是找了很多网上的资料,里面涉及到js导出word的用的都是这个插件,只是在自定义样式这一块 ...

  6. C#中unit

    整理的百度百科的一些关于UNIT的资料 中文名UINT 外文名typedef unsigned short UIN 性    质 32位无符号整数 应    用 是unsigned int派生出来的 ...

  7. vim批量注释和反注释快捷键

    vim批量注释和反注释快捷键 我是个vim新手,非常喜欢这个工具,因为纯手工操作吧.可是有些快捷键还是不知道,写Python的时候经常要调试,会批量注释掉一些代码,vim不像pycharm那样 Ctr ...

  8. Jquery第一次考核

    1. 什么是JS JavaScript 缩写.一种计算机脚本语言 JavaScript是一种动态.弱类型.基于原型的语言,通过浏览器可以直接执行 2. JS三大组成部件 ECMAScript DOM ...

  9. web-fragment模块化使用

    用eclipse右键new->other->web->web fragment project 确定后修改dynamic web project name为你要输出到的项目,当然可以 ...

  10. sort+结构体+简单数学+暴力-例题

    A-前m大的数 还记得Gardon给小希布置的那个作业么?(上次比赛的1005)其实小希已经找回了原来的那张数表,现在她想确认一下她的答案是否正确,但是整个的答案是很庞大的表,小希只想让你把答案中最大 ...