一道算法问题:一幢 200 层的大楼,给你两个鸡蛋. 如果在第 n 层扔下鸡蛋,鸡蛋不碎,那么从前 n-1 层扔鸡蛋都不碎. 这两只鸡蛋一模一样,不碎的话可以扔无数次. 已知鸡蛋在0层扔不会碎. 提出一个策略, 要保证能测出鸡蛋恰好会碎的楼层, 并使此策略在最坏情况下所扔次数最少.
今晚要参加网易的笔试,所以一直在刷题,刷到这个题的时候觉得自己的思路很模糊,就去网上百度了一下,找到一个大神给的解决方案:
如下:
(http://ppwwyyxx.com/2013/Problem-of-Two-Eggs/)
自己写的代码:

一道算法问题:一幢 200 层的大楼,给你两个鸡蛋. 如果在第 n 层扔下鸡蛋,鸡蛋不碎,那么从前 n-1 层扔鸡蛋都不碎. 这两只鸡蛋一模一样,不碎的话可以扔无数次. 已知鸡蛋在0层扔不会碎. 提出一个策略, 要保证能测出鸡蛋恰好会碎的楼层, 并使此策略在最坏情况下所扔次数最少.的更多相关文章
- k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次?
题目 k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次? 换个说法: k个鸡蛋试验x次最多可以检测N层楼.计算出N? 逆向思维和数学公式解. 分析 定义N(k,x) 如果第k个 ...
- 面试官:你有m个鸡蛋,如何用最少的次数测出鸡蛋会在哪一层碎?
假设你面前有一栋n层的大楼和m个鸡蛋,假设将鸡蛋从f层或更高的地方放扔下去,鸡蛋才会碎,否则就不会.你需要设计一种策略来确定f的值,求最坏情况下扔鸡蛋次数的最小值. leetcode原题链接 乍一看这 ...
- 如何利用AI识别未知——加入未知类(不太靠谱),检测待识别数据和已知样本数据的匹配程度(例如使用CNN降维,再用knn类似距离来实现),将问题转化为特征搜索问题而非决策问题,使用HTM算法(记忆+模式匹配预测就是智能),GAN异常检测,RBF
https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经 ...
- 设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1)。试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法。
设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1).试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法.要求算法在最坏情况下所用的计算时间为O(N),只用到O(1)的辅助 ...
- c++ LeetCode(初级数组篇)十一道算法例题代码详解(一)
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/10940636.html 唉!最近忙着面试找实习,然后都是面试的很多是leetcode的算法题, ...
- 每天一道算法题-leetcode136-只出现一次的数字
前言 打卡第一天 2019.10.26日打卡 算法,即解决问题的方法.同一个问题,使用不同的算法,虽然得到的结果相同,但是耗费的时间和资源是不同的.这就需要我们学习算法,找出哪个算法更好. 大家都知道 ...
- 从一道算法题实现一个文本diff小工具
众所周知,很多社区都是有内容审核机制的,除了第一次发布,后续的修改也需要审核,最粗暴的方式当然是从头再看一遍,但是编辑肯定想弄死你,显然这样效率比较低,比如就改了一个错别字,再看几遍可能也看不出来,所 ...
- C++:一般情况下,设计函数的形参只需要两种形式
C++:一般情况下,设计函数的形参只需要两种形式.一,是引用形参,例如 void function (int &p_para):二,是常量引用形参,例如 void function(const ...
- 每天一道算法题(4)——O(1)时间内删除链表节点
1.思路 假设链表......---A--B--C--D....,要删除B.一般的做法是遍历链表并记录前驱节点,修改指针,时间为O(n).删除节点的实质为更改后驱指针指向.这里,复制C的内容至B(此时 ...
随机推荐
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- Caffeine Cache-高性能Java本地缓存组件
前面刚说到Guava Cache,他的优点是封装了get,put操作:提供线程安全的缓存操作:提供过期策略:提供回收策略:缓存监控.当缓存的数据超过最大值时,使用LRU算法替换.这一篇我们将要谈到一个 ...
- 【原创实践】U大师启动安装windows XP
1:使用U大师3.0版制作启动U盘,拷贝windows xp或者win7的原版安装iso(zh-hans_windows_xp_professional_with_service_pack_3_x86 ...
- Android8.1 MTK平台 截屏功能分析
前言 涉及到的源码有 frameworks\base\services\core\java\com\android\server\policy\PhoneWindowManager.java vend ...
- canvas 鼠标位置缩放图形
最近再做 webcad , 需要在 canvas 上对图形进行缩放,主要分为以下几个步骤: 1.找到当前光标所在位置,确定其在相对 canvas 坐标系的坐标 绑定鼠标滚轮事件,假定每次缩放比例 0 ...
- keras 学习笔记:从头开始构建网络处理 mnist
全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ...
- Linux配置部署_新手向(一)——CentOS系统安装
目录 前言 VMware 开始安装 系统安装 小结 @ 前言 最近忙过一件人生大事之后,终于稍微有点时间鼓捣东西,之前net core相关的基础已经鼓捣的差不多了,既然net core跨平台,那就来体 ...
- 逻辑回归(Logistic Regression)详解,公式推导及代码实现
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...
- html中video标签
video标签: <video src="视频的后缀名是.webM/.ogg/.mp4 "></video>属性: src:用于告诉video标签需要播放的 ...
- JavaScript数组方法大全(第一篇)
数组方法大全(第一篇) 注意:第一次写博客有点小紧张,如有错误欢迎指出,如有雷同纯属巧合,本次总结参考书籍JavaScript权威指南,有兴趣的小伙伴可以去翻阅一下哦 join()方法 该方法是将数组 ...