题意

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

思路

注意题目的数据不一定只有1,或者2,而是看输入有多少数字。

其实可以转化为,有多少个全排列小于给定的数字,因为把0去掉相当于把0拿到前面去。
具体写的时候,类似数位dp的思路。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = ;
char str[maxn];
int cnt[],val[maxn];
ll dp[maxn][maxn];
ll C(int n, int m) {
if(m < || n < || n < m) return ;
if(dp[n][m]) return dp[n][m];
if(n == m || m == ) return ;
return dp[n][m] = C(n-, m) + C(n-, m-);
} ll cal(int n){
ll res = ;
for(int i=; i<=; i++)
if(cnt[i] > )
res *= C(n, cnt[i]), n-= cnt[i];
return res;
}
int main(){
// debug(C(4, 2));
scanf("%s", str);
int len = strlen(str);
for(int i=; i<len; i++) {
val[i+] = str[i] - '';
cnt[str[i] - ''] ++;
}
ll ans = ,n = len; for(int i=; i<=len; i++) {
n--;
for(int j=; j<val[i]; j++) {
cnt[j]--;
ans += cal(n);
cnt[j]++;
}
cnt[val[i]]--;
}
printf("%lld\n", ans);
return ;
}

P2518 [HAOI2010]计数 类似数位dp的更多相关文章

  1. BZOJ 2425 [HAOI2010]计数:数位dp + 组合数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意: 给你一个数字n,长度不超过50. 你可以将这个数字: (1)去掉若干个0 ( ...

  2. [luoguP2518][HAOI2010]计数(数位DP)

    传送门 重新学习数位DP.. 有一个思路,枚举全排列,然后看看比当前数小的有多少个 当然肯定是不行的啦 但是我们可以用排列组合的知识求出全排列的个数 考虑数位dp 套用数位dp的方法,枚举每一位,然后 ...

  3. BZOJ2425 [HAOI2010]计数 【数位dp】

    题目 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现 ...

  4. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  5. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

  6. 2018牛客网暑假ACM多校训练赛(第四场)C Chiaki Sequence Reloaded (组合+计数) 或 数位dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round4-C.html 题目传送门 - https://www.no ...

  7. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

  8. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  9. LuoguP2602 [ZJOI2010]数字计数【数位dp】By cellur925

    题目传送门 题目大意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 继续数位dp=w=. 这一次我们不需要记录$pre$啦!(撒花). 因为这次我们需要的 ...

随机推荐

  1. vue中el-upload上传多图片且携带参数,批量而不是一张一张的解决方案

    现在前端基本不是vue技术栈就是react技术栈. vue技术栈最常用的就是element-ui的ui框架了. 在项目中,我们经常会碰到这种需求:批量上传文件 element-ui 确实也为我们提供了 ...

  2. 基于Spark Grahpx+Neo4j 实现用户社群发现

    上一篇文章知识图谱在大数据中的应用我们介绍了知识图谱的一些概念和应用场景,今天我们就来看一个具体的应用案例了解下知识图谱的应用.用户增长对于一个APP的生存起到了至关重要的作用,没有持续的用户增长,再 ...

  3. 【iOS】“找不到使用指定主机名的服务器”

    今天用 Application Loader 提交 APP 的时,遇到了这个奇葩的问题,如下图: 后来换个网络解决了……我也不知道什么原因,就这么奇葩的弄好了……

  4. angular6组件通信

    此文章是用markdown书写,赋值全部到vscode打开即可. # Angular组件通信 ## .父组件传递数据到子组件 - `@Input`:属性绑定,父组件向子组件传递数据 ```js // ...

  5. Hadoop MapReduce的Shuffle过程

    一.概述 理解Hadoop的Shuffle过程是一个大数据工程师必须的,笔者自己将学习笔记记录下来,以便以后方便复习查看. 二. MapReduce确保每个reducer的输入都是按键排序的.系统执行 ...

  6. hdoj 3732 Ahui Writes Word (多重背包)

    之前在做背包的题目时看到了这道题,一看,大喜,这不是裸裸的01背包吗!!  然后华丽丽的超时,相信很多人也和我一样没有考虑到数据量的大小. 时隔多日,回过头来看这道题,依旧毫无头绪....不过相比之前 ...

  7. coffeescript 函数 箭头表达式

    函数 do可以形成闭包,使方法作用域不受外部变化的影响. 隐式返回最后一个表达式的值 函数调用省略括号 用arguments数组访问传递给函数的所有对象(低可读性) @name为this.name的简 ...

  8. maven打jar包包括依赖包

    <build> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId& ...

  9. 分布式ID系列(4)——Redis集群实现的分布式ID适合做分布式ID吗

    首先是项目地址: https://github.com/maqiankun/distributed-id-redis-generator 关于Redis集群生成分布式ID,这里要先了解redis使用l ...

  10. HTML/CSS:block,inline和inline-block概念和区别

    总体概念 block和inline这两个概念是简略的说法,完整确切的说应该是 block-level elements (块级元素) 和 inline elements (内联元素).block元素通 ...