深度学习数据集Deep Learning Datasets
Datasets
Symbolic Music Datasets
- Piano-midi.de: classical piano pieces (http://www.piano-midi.de/)
- Nottingham : over 1000 folk tunes (http://abc.sourceforge.net/NMD/)
- MuseData: electronic library of classical music scores (http://musedata.stanford.edu/)
- JSB Chorales: set of four-part harmonized chorales (http://www.jsbchorales.net/index.shtml)
Natural Images
- MNIST: handwritten digits (http://yann.lecun.com/exdb/mnist/)
- NIST: similar to MNIST, but larger
- Perturbed NIST: a dataset developed in Yoshua’s class (NIST with tons of deformations)
- CIFAR10 / CIFAR100: 32×32 natural image dataset with 10/100 categories (http://www.cs.utoronto.ca/~kriz/cifar.html)
- Caltech 101: pictures of objects belonging to 101 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech101/)
- Caltech 256: pictures of objects belonging to 256 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech256/)
- Caltech Silhouettes: 28×28 binary images contains silhouettes of the Caltech 101 dataset
- STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 datasetbut with some modifications.http://www.stanford.edu/~acoates//stl10/
- The Street View House Numbers (SVHN) Dataset - http://ufldl.stanford.edu/housenumbers/
- NORB: binocular images of toy figurines under various illumination and pose (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)
- Imagenet: image database organized according to the WordNethierarchy (http://www.image-net.org/)
- Pascal VOC: various object recognition challenges (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)
- Labelme: A large dataset of annotated images, http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
- COIL 20: different objects imaged at every angle in a 360 rotation(http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php)
- COIL100: different objects imaged at every angle in a 360 rotation (http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php)
- Arcade Universe- An artificial dataset generator with images containing arcade games sprites such as tetris pentomino/tetromino objects. This generator is based on the O. Breleux’s bugland dataset generator.
- A collection of datasets inspired by the ideas from BabyAISchool:
- BabyAIShapesDatasets : distinguishing between 3 simple shapes
- BabyAIImageAndQuestionDatasets : a question-image-answer dataset
- Datasets generated for the purpose of an empirical evaluation of deep architectures (DeepVsShallowComparisonICML2007):
- MnistVariations : introducing controlled variations in MNIST
- RectanglesData : discriminating between wide and tall rectangles
- ConvexNonConvex : discriminating between convex and nonconvex shapes
- BackgroundCorrelation : controlling the degree of correlation in noisy MNIST backgrounds
Faces
- Labelled Faces in the Wild: 13,000 images of faces collected from the web, labelled with the name of the person pictured (http://vis-www.cs.umass.edu/lfw/)
- Toronto Face Dataset
- Olivetti: a few images of several different people (http://www.cs.nyu.edu/~roweis/data.html)
- Multi-Pie: The CMU Multi-PIE Face Database (http://www.multipie.org/)
- Face-in-Action (http://www.flintbox.com/public/project/5486/)
- JACFEE: Japanese and Caucasian Facial Expressions of Emotion (http://www.humintell.com/jacfee/)
- FERET: The Facial Recognition Technology Database (http://www.itl.nist.gov/iad/humanid/feret/feret_master.html)
- mmifacedb: MMI Facial Expression Database (http://www.mmifacedb.com/)
- IndianFaceDatabase: http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/)
- (e.g. The Yale Face Database (http://vision.ucsd.edu/content/yale-face-database) and The Yale Face Database B (http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html)).
Text
- 20 newsgroups: classification task, mapping word occurences to newsgroup ID (http://qwone.com/~jason/20Newsgroups/)
- Reuters (RCV*) Corpuses: text/topic prediction (http://about.reuters.com/researchandstandards/corpus/)
- Penn Treebank : used for next word prediction or next character prediction (http://www.cis.upenn.edu/~treebank/)
- Broadcast News: large text dataset, classically used for next word prediction (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97S44)
- Wikipedia Dataset
- Multidomain sentiment analysis dataset: http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
Speech
- TIMIT Speech Corpus: phoneme classification (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1)
- Aurora : Timit with noise and additional information
- MovieLens: Two datasets available from http://www.grouplens.org.
The first dataset has 100,000 ratings for 1682 movies by 943 users,
subdivided into five disjoint subsets. The second dataset has about 1
million ratings for 3900 movies by 6040 users. - Jester: This dataset contains 4.1 million continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 users.
- Netflix Prize: Netflix released an anonymised version of their movie rating dataset; it consists of 100 million ratings, done by 480,000 users who have rated between 1 and all of the 17,770 movies.
- Book-Crossing dataset: This dataset is from the Book-Crossing community, and contains 278,858 users providing 1,149,780 ratings about 271,379 books.
Misc
- “Musk” dataset
- CMU Motion Capture Database: (http://mocap.cs.cmu.edu/)
- Brodatz dataset: texture modeling (http://www.ux.uis.no/~tranden/brodatz.html)
- Million Song dataset: http://labrosa.ee.columbia.edu/millionsong/
- Merck Molecular Activity Challenge - http://www.kaggle.com/c/MerckActivity/data
from: http://deeplearning.net/datasets/
深度学习数据集Deep Learning Datasets的更多相关文章
- 深度学习(Deep Learning)资料大全(不断更新)
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号 ...
- 学习笔记之深度学习(Deep Learning)
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep lea ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
- 深度学习(deep learning)
最近deep learning大火,不仅仅受到学术界的关注,更在工业界受到大家的追捧.在很多重要的评测中,DL都取得了state of the art的效果.尤其是在语音识别方面,DL使得错误率下降了 ...
- 如何正确理解深度学习(Deep Learning)的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...
- 深度学习教程Deep Learning Tutorials
Deep Learning Tutorials Deep Learning is a new area of Machine Learning research, which has been int ...
- Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...
- 深度学习研究组Deep Learning Research Groups
Deep Learning Research Groups Some labs and research groups that are actively working on deep learni ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
随机推荐
- window服务器上搭建git服务,window server git!!!
先给大家看一个高大上的,这是我给我公司配置的,小伙伴们都说好! 阿里云的2012server 基于这篇大神的教程,我把服务端搭建好了. 传送门,当然我还是自己做个笔记的好. 1.下载java,并安装 ...
- USACO 5.3 Big Barn
Big BarnA Special Treat Farmer John wants to place a big square barn on his square farm. He hates to ...
- 将C++ IplImage 图像用C#读取
如何将C++ IplImage 图像用C#读取 ? 将opencv 的C++程序做成 dll 动态链接库 用C#调用 当然这里需要安装emgucv ,也可以自己实现这个类. 下面我把实现贴出来给大 ...
- 【面试总结】网易2019秋招一站式面试总结(等offer中……)
岗位:运维工程师(网易杭州) 面试时间:一天 上午十一点二十,准时开启面试,初面面试官是个看起来就像是主管的人,厚实的身体,中气浑厚的声音,整齐朴素的衬衫. 简要问题摘录如下:(后续补充答案内容) 1 ...
- java jdbc深入理解(connection与threadlocal与数据库连接池和事务实)
1.jdbc连接数据库,就这样子 Class.forName("com.mysql.jdbc.Driver");java.sql.Connection conn = DriverM ...
- 网络图片嗅探工具driftnet
网络图片嗅探工具driftnet 图片是网络数据传输的重要内容.Kali Linux内置了一款专用工具drifnet.该工具可以支持实时嗅探和离线嗅探.它可以从数据流中提取JPEG和GIF这两种网 ...
- jQuery记忆巩固
jQuery是由原生js写的所以说所有jQuery制作出来的效果都可以使用js做出来,jQuery出现的目的是为了优化代码,提高码代码的效率它将很多功能封装. 一.jQuery的认识 1.何为jque ...
- 每一个JavaScript开发者应该了解的浮点知识
在JavaScript开发者的开发生涯中的某些点,总会遇到奇怪的BUG——看似基础的数学问题,但却又觉得有些不对劲.总有一天,你会被告知JavaScript中的数字实际上是浮点数.试图了解浮点数和为什 ...
- 改变手机浏览器(iPhone/Android)上文本输入框的默认弹出键盘
iPhone/iPad和Android提供不同的的键盘输入类型,触发合适的键盘将极大地改善用户体验. 键盘类型 默认: 默认键盘的字母模式 数字: 默认键盘的数字模式,(含小数点等) 邮件: 与默 ...
- http协议之 COOKIE
cookie我们都很了解,这里描述下cookie的几个参数意义 key = "qq", value = "Bobser" .. os.time(), path ...