BZOJ3667:Rabin-Miller算法(Pollard-Rho)
Description
Input
第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime
第二,如果不是质数,输出它最大的质因子是哪个。
Output
第一行CAS(CAS<=350,代表测试数据的组数)
以下CAS行:每行一个数字,保证是在64位长整形范围内的正数。
对于每组测试数据:输出Prime,代表它是质数,或者输出它最大的质因子,代表它是和数
Sample Input
2
13
134
8897
1234567654321
1000000000000
Sample Output
Prime
67
41
4649
5
HINT
数据范围:
保证cas<=350,保证所有数字均在64位长整形范围内。
Solution
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std; LL T,maxn,x;
LL prime[]={,,,,,,,,}; LL Mul(LL a,LL b,LL MOD)
{
LL tmp=a*b-(LL)((long double)a*b/MOD+0.1)*MOD;
return tmp<?tmp+MOD:tmp;
} LL Qpow(LL a,LL b,LL MOD)
{
LL ans=;
while (b)
{
if (b&) ans=Mul(ans,a,MOD);
a=Mul(a,a,MOD); b>>=;
}
return ans;
} LL gcd(LL a,LL b) {return b==?a:gcd(b,a%b);} bool Miller_Rabin(LL n)
{
if (n==) return ;
if (n< || n%==) return ;
LL m=n-, l=;
while (m%==) ++l, m>>=;
for (int i=; i<; ++i)
{
LL p=prime[i], w=Qpow(p,m,n);
if (w== || w==n- || p==n) continue;
for (int j=; j<=l; ++j)
{
LL u=Mul(w,w,n);
if (u== && w!= && w!=n-) return ;
w=u;
}
if (w!=) return ;
}
return ;
} LL Pollard_Rho(LL n,LL c)
{
LL x=rand()%n,y=x,p=,k=;
for (LL i=; p==; ++i)
{
x=(Mul(x,x,n)+c)%n;
p=x>y?x-y:y-x;
p=gcd(p,n);
if (i==k) y=x,k+=k;
}
return p;
} void Solve(LL n)
{
if (n==) return;
if (Miller_Rabin(n)) {maxn=max(maxn,n); return;}
LL t=n;
while (t==n) t=Pollard_Rho(n,rand()%(n-)+);
Solve(t); Solve(n/t);
} int main()
{
scanf("%lld",&T);
while (T--)
{
scanf("%lld",&x);
maxn=;
Solve(x);
if (maxn==x) puts("Prime");
else printf("%lld\n",maxn);
}
}
BZOJ3667:Rabin-Miller算法(Pollard-Rho)的更多相关文章
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- 数学--数论--随机算法--Pollard Rho 大数分解算法 (带输出版本)
RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试. 操作流程 首先,我们先用MillerRabinMille ...
- 数学--数论--随机算法--Pollard Rho 大数分解算法(纯模板带输出)
ACM常用模板合集 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll pr; ll pmod(l ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
随机推荐
- Java中反射和Unsafe破坏单例设计模式
有如下单例模式设计代码: class Singleton { private String info = "HELLO SHIT"; private static Singleto ...
- 我用ASP.NET缓存之OutputCache
[我的理解]页面缓存常用在网站上.Web应用系统上也用,但由于Web系统常与数据库打交道.时效性要求蛮强的,所以是否能用缓存得具体情况具体分析(很喜欢这句话“具体情况具体分析”,很符合国人的中庸之道) ...
- 【转】类找不到总结java.lang.ClassNotFoundException
(1)org.apache.tomcat.dbcp.dbcp.SQLNestedException: Cannot load JDBC driver class 'com.microsoft.sqls ...
- Java版分布式ID生成器技术介绍
分布式全局ID生成器作为分布式架构中重要的组成部分,在高并发场景下承载着分担数据库写瓶颈的压力. 之前实现过PHP+Swoole版,性能和稳定性在生产环境下运行良好.这次使用Java进行重写,目前测试 ...
- Linux:网络工具 nc
虽然叫nc不过用起来非常方便. 选项 - Use IPv4 only - Use IPv6 only -U, --unixsock Use Unix domain sockets only -C, - ...
- 【 js 片段 】如何组织表单的默认提交?【亲测有效】
最近做的一个项目,我分到的部分有表单验证.点击了提交按钮,但我并不想让他跳转页面去提交.于是经过各种百度,各种 stackoverflow,各种抱大神腿之后,有了以下解决办法: 重点就是阻止 form ...
- 零基础学python习题 - Python必须知道的基础语法
1. 以下变量命名不正确的是(D) A. foo = the_value B. foo = l_value C. foo = _value D. foo = value_& 2. 计算2的38 ...
- sublime text2 注册码
近终于找到 sublime Text2 升级到 2.0.2 build 2221 64位 的破破解 输入注册码就成了 ----- BEGIN LICENSE ----- Andrew Weber S ...
- 好用的js-cookies工具
背景 回顾一年前的代码,关于cookies这块,增删改查完全可以封装成一个模块.在MDN上看到一款很全的分享,在此做个记录. cookies模块 /*\ |*| |*| :: cookies.js : ...
- android--Git上克隆项目遇到的坑
直接上图,首先你得有你得GitHub项目地址,如下: 然后打开android studio,选择新建项目时从Git上克隆: 点击clone等待完成,新窗口打开. 打开之后可能.或许.大概.也许会出现下 ...