1. 下面是一到Java笔试题:

 public class Test2
{
public void add(Byte b)
{
b = b++;
}
public void test()
{
Byte a = 127;
Byte b = 127;
add(++a);
System.out.print(a + " ");
add(b);
System.out.print(b + "");
}
}

2. 为方便分析起见,将打印的语句去掉,如下:

     public void add(Byte b)
{
b = b++;
}
public void test()
{
Byte a = 127;
Byte b = 127;
add(++a);
add(b);
}

3. 将上述代码反编译,得到如下字节码:

 public void add(java.lang.Byte);
Code:
0: aload_1
1: astore_2
2: aload_1
3: invokevirtual #2 // Method java/lang/Byte.byteValue:(
)B
6: iconst_1
7: iadd
8: i2b
9: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
12: dup
13: astore_1
14: astore_3
15: aload_2
16: astore_1
17: return public void test();
Code:
0: bipush 127
2: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
5: astore_1
6: bipush 127
8: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
11: astore_2
12: aload_0
13: aload_1
14: invokevirtual #2 // Method java/lang/Byte.byteValue:(
)B
17: iconst_1
18: iadd
19: i2b
20: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
23: dup
24: astore_1
25: invokevirtual #4 // Method add:(Ljava/lang/Byte;)V
28: aload_0
29: aload_2
30: invokevirtual #4 // Method add:(Ljava/lang/Byte;)V
33: return
}

4. 字节码很长,看着发怵,不用怕,我们将字节码分成两部分:add方法和test方法。

5. 我们先来看add方法:

 add方法局部变量表
下标: 0 1 2 3
标记: this 形参Byte b Byte型临时变量tmp Byte型临时变量tmp2
值 : -128 -128 -127
public void add(java.lang.Byte);
Code:
0: aload_1 // 局部变量表中下标为1的引用型局部变量b进栈
1: astore_2 // 将栈顶数值赋值给局部变量表中下标为2的引用型局部变量tmp,栈顶数值出栈。
2: aload_1 // 局部变量表中下标为1的引用型局部变量b进栈
3: invokevirtual #2 // 自动拆箱,访问栈顶元素b,调用实例方法b.byteValue获取b所指Byte
// 对象的value值-128,并压栈
6: iconst_1 // int型常量值1进栈
7: iadd // 依次弹出栈顶两int型数值1(0000 0001)、-128(1000 0000)
//(byte类型自动转型为int类型)相加,并将结果-127(1000 0001)进栈
8: i2b // 栈顶int值-127(1000 0001)出栈,强转成byte值-127(1000 0001),并且结果进栈
9: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为-127的Byte对象的地址,并压栈
12: dup // 复制栈顶数值,并且复制值进栈
13: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量b,栈顶数值出栈。此时b为-127
14: astore_3 // 将栈顶数值赋值给局部变量表中下标为3的引用型局部变量tmp2,栈顶数值出栈。此时tmp2为-127
15: aload_2 // 局部变量表中下标为2的引用型局部变量tmp进栈,即-128入栈
16: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量b,栈顶数值出栈。此时b为-128
17: return

总结一下上述过程,核心步骤为b = b++;分为三步:参考:http://blog.csdn.net/brooksychen/article/details/1624753

①把变量b的值取出来,放在一个临时变量里(我们先记作tmp);

②把变量b的值进行自加操作;

③把临时变量tmp的值作为自增运算前b的值使用,在本题中就是给变量b赋值。

到此可得出结论,add方法只是个摆设,没有任何作用,不修改实参的值。

6. 搞懂了add方法,我们接下来分析test方法:

这里需要说明两点:

(1)由于Byte类缓存了[-128,127]之间的Byte对象,故当传入的实参byte相同时,通过Byte.valueOf(byte)返回的对象是同一个对象,详见Byte源码。

(2)如果是实例方法(非static),那么局部变量表的第0位索引的Slot默认是用于传递方法所属对象实例的引用,在方法中通过this访问。详见:http://wangwengcn.iteye.com/blog/1622195

 test方法局部变量表
下标: 0 1 2
标记: this 形参Byte a Byte型临时变量b
值 : -128 127
public void test();
Code:
0: bipush 127 // 将一个byte型常量值推送至操作数栈栈顶
2: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为127的Byte对象的地址,并压栈
5: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量a,栈顶数值出栈。此时a为127
6: bipush 127 // 将一个byte型常量值推送至操作数栈栈顶
8: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为127的Byte对象的地址,并压栈。这里需要说明一点,
// 由于Byte类缓存了[-128,127]之间的Byte对象,故当传入的实参byte相同时,
// 通过Byte.valueOf(byte)返回的对象是同一个对象,详见Byte源码。
11: astore_2 // 将栈顶数值赋值给局部变量表中下标为2的引用型局部变量b,栈顶数值出栈。此时b为127
12: aload_0 // 局部变量表中下标为0的引用型局部变量进栈,即this,加载this主要是为了下面通过this调用add方法。
13: aload_1 // 局部变量表中下标为1的引用型局部变量a进栈
14: invokevirtual #2 // 自动拆箱,访问栈顶元素a,调用实例方法a.byteValue获取a所指Byte
// 对象的value值127,并压栈
17: iconst_1 // int型常量值1进栈
18: iadd // 依次弹出栈顶两int型数值1(0000 0001)、127(0111 1111)
//(byte类型自动转型为int类型)相加,并将结果128(1000 0000)进栈
19: i2b // 栈顶int值128(1000 0000)出栈,强转成byte值-128(1000 0000),并且结果进栈
20: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为-128的Byte对象的地址,并压栈
23: dup // 复制栈顶数值,并且复制值进栈
24: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量a,栈顶数值出栈。此时a为-128
25: invokevirtual #4 // 调用实例方法add:(Byte),传入的实参为栈顶元素,也即a的拷贝,前面已经分析过了,该调用不改变a的对象值
// 该实例方法的调用需要访问栈中的两个参数,一个是实参,也即a的拷贝,一个是在第12步入栈的this。
28: aload_0 // 局部变量表中下标为0的引用型局部变量进栈,即this,加载this主要是为了下面通过this调用add方法。
29: aload_2 // 局部变量表中下标为2的引用型局部变量b进栈
30: invokevirtual #4 // 调用实例方法add:(Byte),传入的实参为栈顶元素,也即b,前面已经分析过了,该调用不改变b的对象值
// 该实例方法的调用需要访问栈中的两个参数,一个是实参,也即b,一个是在第28步入栈的this。
33: return // 函数执行到最后,b所指对象的值没有改变,仍为127。
}

7. 综合以上分析,原问题的输出为-128 127

8. 小结:

通过以上分析,我们发现该题综合考察了Byte自动拆/装箱、Byte对象缓存、Java编译器对i=i++的特殊处理等等,相当有难度呀。

从字节码角度分析Byte类型变量b++和++b的更多相关文章

  1. 反编译字节码角度分析synchronized关键字的原理

    1.synchronized介绍 synchronized是java关键字.JVM规范中,synchronized关键字用于在线程并发执行时,保证同一时刻,只有一个线程可以执行某个代码块或方法:同时还 ...

  2. 源码角度分析-newFixedThreadPool线程池导致的内存飙升问题

    前言 使用无界队列的线程池会导致内存飙升吗?面试官经常会问这个问题,本文将基于源码,去分析newFixedThreadPool线程池导致的内存飙升问题,希望能加深大家的理解. (想自学习编程的小伙伴请 ...

  3. 字节码增强技术-Byte Buddy

    本文转载自字节码增强技术-Byte Buddy 为什么需要在运行时生成代码? Java 是一个强类型语言系统,要求变量和对象都有一个确定的类型,不兼容类型赋值都会造成转换异常,通常情况下这种错误都会被 ...

  4. 从JDK源码角度看Byte

    Java的Byte类主要的作用就是对基本类型byte进行封装,提供了一些处理byte类型的方法,比如byte到String类型的转换方法或String类型到byte类型的转换方法,当然也包含与其他类型 ...

  5. synchronized关键字所生成的字节码详细分析

    在之前已经将如下这样的源文件对应的字节码文件完整的分析完了,如下: 这次再来写一个内容稍丰富一点的类,准备再来从头至尾的来分析一下,对其字节码的理解进一步巩固,如下: 然后用javap -verbos ...

  6. 从java字节码角度看线程安全性问题

    先看代码: package com.roocon.thread.t3; public class Sequence { private int value; public int getNext(){ ...

  7. 从字节码来分析,i++与++i区别

    ++/-- 是一种特殊的算术运算符,在算术运算符中需要两个操作数来进行运算,而自增自减运算符是一个操作数 前缀自增(++a):先进行自增运算,再进行表达式运算: 后缀自增(a++):先进行表达式运算, ...

  8. 【synchronized锁】通过synchronized锁 反编译查看字节码指令分析synchronized关键字修饰方法与代码块的区别

    前提: 首先要铺垫几个前置的知识: Java中的锁如sychronize锁是对象锁,Java对象头中具有标识位,当对象锁升级为重量级锁时,重量级锁的标识位会指向监视器monitor, 而每个Java对 ...

  9. 从源码角度分析 MyBatis 工作原理

    一.MyBatis 完整示例 这里,我将以一个入门级的示例来演示 MyBatis 是如何工作的. 注:本文后面章节中的原理.源码部分也将基于这个示例来进行讲解.完整示例源码地址 1.1. 数据库准备 ...

随机推荐

  1. Python操作sqlserver 2000

    在网上找到了pyodbc这个模块,本人操作系统是 Ubuntu 16.04 , Python 2.7  已经安装了pip 按照 官方文档 的步骤成功安装. 但是需要跨平台. 使用pyodbc在wind ...

  2. windows10下基于vs2015的 caffe安装教程及python接口实现

    啦啦啦:根据网上的教程前一天安装失败,第二天才安装成功.其实caffe的安装并不难,只是网上的教程不是很全面,自己写一个,留作纪念. 准备工作 Windows10 操作系统 vs2015(c++编译器 ...

  3. spring IoC容器的实现。

    控制反转是spring的重要概念.而实现控制反转的IoC容器具体又是如何实现呢. IoC容器的目的是能够管理系统中各个对象之间的关系和依赖,为了实现这个功能,spring框架对Bean做了进一步抽象 ...

  4. MySQL搭建环境

    一.MySQL安装 Windows下安装参考网址:https://blog.csdn.net/NepalTrip/article/details/79492058 Ubuntu Linux下安装参考网 ...

  5. IOC轻量级框架之Autofac

    http://www.cnblogs.com/WeiGe/p/3871451.html http://www.cnblogs.com/hkncd/archive/2012/11/21/2780041. ...

  6. 程序员 & 设计师都能用上的 75 份速查手册

    分享75份开发人员和设计师会用到的速查手册,由 vikas 收集整理,包括:jQuery.HTML.HTML5.CSS.CSS3.JavaScript.Photoshop .git.Linux.Jav ...

  7. 对一道pwnhub的一点点记录

    一.通过ssh弱口令,建立socket5代理进内网. 1.修改proxychains配置文件vi /etc/proxychains.conf如下: 2.建立ssh隧道:ssh -qTfnN -D 70 ...

  8. sklearn_k邻近分类

    # K邻近分类#--------------------------------# coding:utf-8 import pandas as pd from sklearn.neighbors im ...

  9. C# Json字符串反序列化

    using DevComponents.DotNetBar; using MyControl; using Newtonsoft.Json; using System; using System.Co ...

  10. Ubuntu下使用Nginx+uWSGI+Flask(初体验)

    Ubuntu 18.04,Nginx 1.14.0, uWSGI 2.0.17.1,Flask, 前言 Windows不支持uWSGI!为了上线自己的项目,只能选择Linux. 自己前面开发了一个Fl ...