从字节码角度分析Byte类型变量b++和++b
1. 下面是一到Java笔试题:
public class Test2
{
public void add(Byte b)
{
b = b++;
}
public void test()
{
Byte a = 127;
Byte b = 127;
add(++a);
System.out.print(a + " ");
add(b);
System.out.print(b + "");
}
}
2. 为方便分析起见,将打印的语句去掉,如下:
public void add(Byte b)
{
b = b++;
}
public void test()
{
Byte a = 127;
Byte b = 127;
add(++a);
add(b);
}
3. 将上述代码反编译,得到如下字节码:
public void add(java.lang.Byte);
Code:
0: aload_1
1: astore_2
2: aload_1
3: invokevirtual #2 // Method java/lang/Byte.byteValue:(
)B
6: iconst_1
7: iadd
8: i2b
9: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
12: dup
13: astore_1
14: astore_3
15: aload_2
16: astore_1
17: return public void test();
Code:
0: bipush 127
2: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
5: astore_1
6: bipush 127
8: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
11: astore_2
12: aload_0
13: aload_1
14: invokevirtual #2 // Method java/lang/Byte.byteValue:(
)B
17: iconst_1
18: iadd
19: i2b
20: invokestatic #3 // Method java/lang/Byte.valueOf:(B)
Ljava/lang/Byte;
23: dup
24: astore_1
25: invokevirtual #4 // Method add:(Ljava/lang/Byte;)V
28: aload_0
29: aload_2
30: invokevirtual #4 // Method add:(Ljava/lang/Byte;)V
33: return
}
4. 字节码很长,看着发怵,不用怕,我们将字节码分成两部分:add方法和test方法。
5. 我们先来看add方法:
add方法局部变量表
下标: 0 1 2 3
标记: this 形参Byte b Byte型临时变量tmp Byte型临时变量tmp2
值 : -128 -128 -127
public void add(java.lang.Byte);
Code:
0: aload_1 // 局部变量表中下标为1的引用型局部变量b进栈
1: astore_2 // 将栈顶数值赋值给局部变量表中下标为2的引用型局部变量tmp,栈顶数值出栈。
2: aload_1 // 局部变量表中下标为1的引用型局部变量b进栈
3: invokevirtual #2 // 自动拆箱,访问栈顶元素b,调用实例方法b.byteValue获取b所指Byte
// 对象的value值-128,并压栈
6: iconst_1 // int型常量值1进栈
7: iadd // 依次弹出栈顶两int型数值1(0000 0001)、-128(1000 0000)
//(byte类型自动转型为int类型)相加,并将结果-127(1000 0001)进栈
8: i2b // 栈顶int值-127(1000 0001)出栈,强转成byte值-127(1000 0001),并且结果进栈
9: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为-127的Byte对象的地址,并压栈
12: dup // 复制栈顶数值,并且复制值进栈
13: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量b,栈顶数值出栈。此时b为-127
14: astore_3 // 将栈顶数值赋值给局部变量表中下标为3的引用型局部变量tmp2,栈顶数值出栈。此时tmp2为-127
15: aload_2 // 局部变量表中下标为2的引用型局部变量tmp进栈,即-128入栈
16: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量b,栈顶数值出栈。此时b为-128
17: return
总结一下上述过程,核心步骤为b = b++;分为三步:参考:http://blog.csdn.net/brooksychen/article/details/1624753
①把变量b的值取出来,放在一个临时变量里(我们先记作tmp);
②把变量b的值进行自加操作;
③把临时变量tmp的值作为自增运算前b的值使用,在本题中就是给变量b赋值。
到此可得出结论,add方法只是个摆设,没有任何作用,不修改实参的值。
6. 搞懂了add方法,我们接下来分析test方法:
这里需要说明两点:
(1)由于Byte类缓存了[-128,127]之间的Byte对象,故当传入的实参byte相同时,通过Byte.valueOf(byte)返回的对象是同一个对象,详见Byte源码。
(2)如果是实例方法(非static),那么局部变量表的第0位索引的Slot默认是用于传递方法所属对象实例的引用,在方法中通过this访问。详见:http://wangwengcn.iteye.com/blog/1622195
test方法局部变量表
下标: 0 1 2
标记: this 形参Byte a Byte型临时变量b
值 : -128 127
public void test();
Code:
0: bipush 127 // 将一个byte型常量值推送至操作数栈栈顶
2: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为127的Byte对象的地址,并压栈
5: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量a,栈顶数值出栈。此时a为127
6: bipush 127 // 将一个byte型常量值推送至操作数栈栈顶
8: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为127的Byte对象的地址,并压栈。这里需要说明一点,
// 由于Byte类缓存了[-128,127]之间的Byte对象,故当传入的实参byte相同时,
// 通过Byte.valueOf(byte)返回的对象是同一个对象,详见Byte源码。
11: astore_2 // 将栈顶数值赋值给局部变量表中下标为2的引用型局部变量b,栈顶数值出栈。此时b为127
12: aload_0 // 局部变量表中下标为0的引用型局部变量进栈,即this,加载this主要是为了下面通过this调用add方法。
13: aload_1 // 局部变量表中下标为1的引用型局部变量a进栈
14: invokevirtual #2 // 自动拆箱,访问栈顶元素a,调用实例方法a.byteValue获取a所指Byte
// 对象的value值127,并压栈
17: iconst_1 // int型常量值1进栈
18: iadd // 依次弹出栈顶两int型数值1(0000 0001)、127(0111 1111)
//(byte类型自动转型为int类型)相加,并将结果128(1000 0000)进栈
19: i2b // 栈顶int值128(1000 0000)出栈,强转成byte值-128(1000 0000),并且结果进栈
20: invokestatic #3 // 自动装箱:访问栈顶元素,作为函数实参传入静态方法Byte.valueOf(byte),
// 返回value值为-128的Byte对象的地址,并压栈
23: dup // 复制栈顶数值,并且复制值进栈
24: astore_1 // 将栈顶数值赋值给局部变量表中下标为1的引用型局部变量a,栈顶数值出栈。此时a为-128
25: invokevirtual #4 // 调用实例方法add:(Byte),传入的实参为栈顶元素,也即a的拷贝,前面已经分析过了,该调用不改变a的对象值
// 该实例方法的调用需要访问栈中的两个参数,一个是实参,也即a的拷贝,一个是在第12步入栈的this。
28: aload_0 // 局部变量表中下标为0的引用型局部变量进栈,即this,加载this主要是为了下面通过this调用add方法。
29: aload_2 // 局部变量表中下标为2的引用型局部变量b进栈
30: invokevirtual #4 // 调用实例方法add:(Byte),传入的实参为栈顶元素,也即b,前面已经分析过了,该调用不改变b的对象值
// 该实例方法的调用需要访问栈中的两个参数,一个是实参,也即b,一个是在第28步入栈的this。
33: return // 函数执行到最后,b所指对象的值没有改变,仍为127。
}
7. 综合以上分析,原问题的输出为-128 127
8. 小结:
通过以上分析,我们发现该题综合考察了Byte自动拆/装箱、Byte对象缓存、Java编译器对i=i++的特殊处理等等,相当有难度呀。
从字节码角度分析Byte类型变量b++和++b的更多相关文章
- 反编译字节码角度分析synchronized关键字的原理
1.synchronized介绍 synchronized是java关键字.JVM规范中,synchronized关键字用于在线程并发执行时,保证同一时刻,只有一个线程可以执行某个代码块或方法:同时还 ...
- 源码角度分析-newFixedThreadPool线程池导致的内存飙升问题
前言 使用无界队列的线程池会导致内存飙升吗?面试官经常会问这个问题,本文将基于源码,去分析newFixedThreadPool线程池导致的内存飙升问题,希望能加深大家的理解. (想自学习编程的小伙伴请 ...
- 字节码增强技术-Byte Buddy
本文转载自字节码增强技术-Byte Buddy 为什么需要在运行时生成代码? Java 是一个强类型语言系统,要求变量和对象都有一个确定的类型,不兼容类型赋值都会造成转换异常,通常情况下这种错误都会被 ...
- 从JDK源码角度看Byte
Java的Byte类主要的作用就是对基本类型byte进行封装,提供了一些处理byte类型的方法,比如byte到String类型的转换方法或String类型到byte类型的转换方法,当然也包含与其他类型 ...
- synchronized关键字所生成的字节码详细分析
在之前已经将如下这样的源文件对应的字节码文件完整的分析完了,如下: 这次再来写一个内容稍丰富一点的类,准备再来从头至尾的来分析一下,对其字节码的理解进一步巩固,如下: 然后用javap -verbos ...
- 从java字节码角度看线程安全性问题
先看代码: package com.roocon.thread.t3; public class Sequence { private int value; public int getNext(){ ...
- 从字节码来分析,i++与++i区别
++/-- 是一种特殊的算术运算符,在算术运算符中需要两个操作数来进行运算,而自增自减运算符是一个操作数 前缀自增(++a):先进行自增运算,再进行表达式运算: 后缀自增(a++):先进行表达式运算, ...
- 【synchronized锁】通过synchronized锁 反编译查看字节码指令分析synchronized关键字修饰方法与代码块的区别
前提: 首先要铺垫几个前置的知识: Java中的锁如sychronize锁是对象锁,Java对象头中具有标识位,当对象锁升级为重量级锁时,重量级锁的标识位会指向监视器monitor, 而每个Java对 ...
- 从源码角度分析 MyBatis 工作原理
一.MyBatis 完整示例 这里,我将以一个入门级的示例来演示 MyBatis 是如何工作的. 注:本文后面章节中的原理.源码部分也将基于这个示例来进行讲解.完整示例源码地址 1.1. 数据库准备 ...
随机推荐
- Docker应用四:搭建docker镜像仓库(包括自生成https证书、登陆认证)
利用docker官网提供的registry镜像创建私有仓库 一.首先从docker官网拉取registry镜像: docker pull registry 二.然后运行该镜像: docker run ...
- TOML 详解
TOML的由来 配置文件的使用由来已久,从.ini.XML.JSON.YAML再到TOML,语言的表达能力越来越强,同时书写便捷性也在不断提升. TOML是前GitHub CEO, Tom Prest ...
- canvas 入门
<canvas>是HTML5新增的,是可以使用脚本(JavaScript)在其中绘制图像的HTML元素. canvas是由HTML代码配合高度和宽度属性而定义出的可绘制区域,JavaScr ...
- Shell记录-Shell脚本基础(一)
Shell 注释: 你可以把注释,在你的脚本如下: #!/bin/bash # Author : Zara Ali # Copyright (c) Tutorialsyiibai.com # Scri ...
- CSS3实战之多列
CSS2中如果要设计多列布局,常用的方法有浮动和定位,但是浮动容易错位,定位无法满足模块的自适应能力,以及模块之间的文档流联动的需要.为了解决多列布局的难题,CSS3新增了多列自动布局功能. 利用多列 ...
- redis 批量删除keys
“mf*” 为你的key redis-cli -h 127.0.0.1 -p 6379 -a yourpassword keys “mf*” |xargs redis-cli -h 127.0.0 ...
- 20155301 2016-2017-2 《Java程序设计》第6周学习总结
20155301 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 1.串流设计,在数据来源与目的地之间,简介两者的是串流对象,在来源于目的地都不知道的情况下, ...
- CF264B Good Sequences
传送门 Description: 松鼠丽丝特别喜欢n个她称之为“好整数”的整数:a1,a2,……,an.(会输入) 现在,她对“好序列”很感兴趣.如果一个序列x1,x2,...,xk能够满足一下三个条 ...
- Linux的基础优化-2
1.启动网卡 ifup eth0 2.SSH链接 ifconfig 查看IP后SSH终端连接3.更新源 最小化安装是没有wget工具的,必须先安装再修改源 yum install wget 备份原系统 ...
- php的几个实用正则表达式
更多内容推荐微信公众号,欢迎关注: 此文章是网上搜索而来: 对于开发人员来说,正则表达式是一个非常有用的功能,它提供了 查找,匹配,替换 句子,单词,或者其他格式的字符串.这篇文章主要介绍了15个超实 ...