P1880 [NOI1995]石子合并
题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
输入样例#1:
4
4 5 9 4
输出样例#1:
43
54
解析:
区间dp
dp[i][j]:代表i到j之间能合并出的opt值,k在i到j间滑动,分割为两个部分
sum打个前缀和就行
状态转移方程为: dp[i][j]=opt(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define inf 0x3f3f3f3f
int n,a[maxn],dp1[maxn][maxn],dp2[maxn][maxn];
int sum[maxn];
int ans1=,ans2=inf;
int main()
{
cin>>n;
for(int i=; i<=n; i++)
{
cin>>a[i];
a[i+n]=a[i];
}
for(int i=; i<=n<<; i++)
sum[i]=sum[i-]+a[i];
//让i作为起点,所以逆着走
for(int i=(n<<)-; i>=; i--)
{
for(int j=i+; j<=i+n-; j++)
{
dp2[i][j]=inf;
for(int k=i; k<j; k++)
{
dp1[i][j]=max(dp1[i][j],dp1[i][k]+dp1[k+][j]+sum[j]-sum[i-]);
dp2[i][j]=min(dp2[i][j],dp2[i][k]+dp2[k+][j]+sum[j]-sum[i-]);
}
}
}
for(int i=; i<=n; i++)
{
ans1=max(ans1,dp1[i][i+n-]);
ans2=min(ans2,dp2[i][i+n-]);
}
cout<<ans2<<endl<<ans1; return ;
}
P1880 [NOI1995]石子合并的更多相关文章
- P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...
- 洛谷 P1880 [NOI1995]石子合并 题解
P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
- P1880 [NOI1995]石子合并 区间dp
P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 区间DP初探 P1880 [NOI1995]石子合并
https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
随机推荐
- opencv3.2.0图像离散傅里叶变换
源码: ##名称:离散傅里叶变换 ##平台:QT5.7.1+opencv3.2.0 ##日期:2017年12月13. /**** 新建QT控制台程序****/ #include <QCoreAp ...
- asp.net mvc +easyui 实现权限管理(一)
权限是每个企业应用必须的模块,可以简单,也能比较复杂.目前我们公司的权限要求是 能管控页面.字段.按钮.以及数据权限. 正好公司的进销存系统权限模块由我负责.做完后做下记录是个不错的习惯,知识是慢慢积 ...
- Android之TabHost实现Tab切换
TabHost是整个Tab的容器,包含TabWidget和FrameLayout两个部分,TabWidget是每个Tab的表情,FrameLayout是Tab内容. 实现方式有两种: 1.继承TabA ...
- 你写的什么垃圾代码让Vsync命令不能及时处理呢?(2)
接上篇 1.TraceView Traceview看起来复杂,其实很简单: 上部分图中,X代表时间消耗,Y轴代表各个线程中的方法,且使用了不同颜色表示.面积越款,时间越长. 下部分为分析面板,分析面板 ...
- @autowired 和@resource的区别
1. @Autowired与@Resource都可以用来装配bean. 都可以写在字段上,或写在setter方法上. 2. @Autowired默认按类型装配(这个注解是属业spring的),默认情 ...
- Oracle EBS 报表日期格式问题
1.确保参数日期值集选择:FND_STANDARD_DATE 2.将程序的入口参数选择为 varchar2类型 3.注意输出和游标时参数的截断 to_date(substr(p_DATE_from, ...
- NSArray排序方法讲解
NSArray排序方法讲解 给数组排序有着多种方式 最麻烦的是sortedArrayUsingSelector:,其次是sortedArrayUsingDescriptors:,最容易使用的就是sor ...
- 通过runtime获取对象相关信息
通过runtime获取对象相关信息 在这里,本人给大家提供一个runtime关于NSObject的扩展,用来显示各种NSObject中的信息,这有助于你来分析类的组成:) 先准备以下类供测试: Mod ...
- 局域网不同网段访问设置WINS域名服务系统
大背景 公司两台路由器,网段不同 路由器:192.168.0.1 路由器:192.168.1.1 路由器2需要访问路由器1的机子,初始是ping不通的. 方案 使用IP设置里WINS设置,即可轻松实现 ...
- hibernate连接mysql,查询条件中有中文时,查询结果没有记录,而数据库有符合条件的记录(解决方法)
今天在另一台服务器上重新部署了网站,结果出现了以下问题: ——用hibernate做mysql的数据库连接时,当查询条件中有中文的时候,查询结果没有记录,而数据库中是存在符合条件的记录的. 测试了以下 ...