Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 17610   Accepted: 6786

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase
letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types
were derived, and so on. 



Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different
letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as 

1/Σ(to,td)d(to,td)


where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types. 

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan. 

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that
the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

用一个7位的string代表一个编号。两个编号之间的distance代表这两个编号之间不同字母的个数。

一个编号仅仅能由还有一个编号“衍生”出来。代价是这两个编号之间对应的distance,

如今要找出一个“衍生”方案,使得总代价最小。也就是distance之和最小。

此题的关键是将问题转化为最小生成树的问题。

每个编号为图的一个顶点,顶点与顶点间的编号差即为这条边的权值,题目所要的就是我们求出最小生成树来。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define INF 0x3f3f3f using namespace std; const int maxn = 2000 + 50;
int f[maxn];
int map[maxn][maxn];
bool vist[maxn];
char str[maxn][10];
int ans[maxn];
int n; int find(int x, int y)
{
int cnt = 0;
for(int i=0; i<7; i++)
if( str[x][i]!=str[y][i] )
cnt++;
return cnt;
} void init()
{
memset( map, 0, sizeof(map) );
memset( vist, false, sizeof(vist) );
memset( ans, 0, sizeof(ans) );
for(int i=0; i<n; i++)
scanf( "%s", str[i] );
//for(int i=0; i<n; i++)
// printf("%s\n", str[i]);
for(int i=0; i<n; i++)
for(int j=0; j<=i; j++)
map[i][j] = map[j][i] = find(i, j);
} void prim()
{
int minc, mind;
vist[0] = true;
ans[0] = 0;
for(int i=1; i<n; i++)
ans[i] = map[0][i];
for(int j=0; j<n-1; j++)
{
minc = INF;
for(int i=0; i<n; i++)
{
if( !vist[i] && minc>ans[i] )
{
minc = ans[i];
mind = i;
}
}
if(minc != INF)
{
vist[mind] = true;
for(int i=0; i<n; i++)
if( !vist[i] && ans[i]>map[mind][i] )
ans[i] = map[mind][i];
}
}
} void output()
{
int sum = 0;
for(int i=1; i<n; i++)
sum += ans[i];
printf("The highest possible quality is 1/%d.\n", sum);
} int main()
{
while( scanf( "%d", &n )==1 &&n )
{
init();
prim();
output();
} return 0;
}

POJ 1789:Truck History(prim&amp;&amp;最小生成树)的更多相关文章

  1. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  2. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  3. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  4. poj 1789 Truck History 最小生成树 prim 难度:0

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19122   Accepted: 7366 De ...

  5. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  6. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  7. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  8. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  9. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  10. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

随机推荐

  1. Eclipse 创建文件快捷菜单、避免格式化时自动换行、.properties文件中文乱码、在线安装FreeMarker

    创建文件快捷菜单设置 打开窗口“Customize Perspective - Java EE”,切换选项卡到“Shortcuts”: 进行一下配置: “Generate”:如上图勾选方式 " ...

  2. ML—朴素贝叶斯

    华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练 ...

  3. linux环境中设置jacoco覆盖率

    cd /alidata1/admin/za-themis pkill -9 -f za-themis #CATALINA_HOME=/root/za-tomcat #CATALINA_BASE=/ro ...

  4. ZH奶酪:putty远程登录Linux服务器非常慢

    11.pytty远程登录Linux服务器非常慢 http://www.it165.net/os/html/201209/3425.html 12.启动SSHD服务报错 http://blog.chin ...

  5. php之快速入门学习-7(运算符)

    PHP 运算符 本章节我们将讨论 PHP 中不同运算符的应用. 在 PHP 中,赋值运算符 = 用于给变量赋值. 在 PHP 中,算术运算符 + 用于把值加在一起. PHP 算术运算符 运算符 名称 ...

  6. sql数据库表复制、查看是否锁表

    1.不同数据库之间复制表的数据的方法: 当表目标表存在时: insert into 目的数据库..表 select * from 源数据库..表 当目标表不存在时: select * into 目的数 ...

  7. MISRA-C++ 2008

  8. C++使用hiredis连接带密码的redis服务

    c = redisConnect((char*)redis_host, redis_port); if (c->err) { /* Error flags, 0 when there is no ...

  9. 1z0-052 q209_3

    3: Identify two situations in which you can use Data Recovery Advisor for recovery. (Choose two.) —° ...

  10. 图说十大数据挖掘算法(一)K最近邻算法

    如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...