1078 最小生成树

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 白银 Silver
 
 
 
题目描述 Description

农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的 帮助。 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了使花费最少,他想铺设最短的光纤去连接所有的农场。 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。 每两个农场间的距离不会超过100000

输入描述 Input Description

第一行: 农场的个数,N(3<=N<=100)。

第二行..结尾: 接下来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们每行限制在80个字符以 内,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为线路从第i个农场到它本身的距离在本题中没有意义。

输出描述 Output Description

只有一个输出,是连接到每个农场的光纤的最小长度和。

样例输入 Sample Input

4

0  4  9 21

4  0  8 17

9  8  0 16

21 17 16  0

样例输出 Sample Output

28

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo> typedef long long ll;
using namespace std; #define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 1001
const int inf=; //无限大
int u[maxn*maxn],v[maxn*maxn],w[maxn*maxn],r[maxn*maxn];
//两个端点存在u和v数组中,边权存在w数组中
int p[maxn*maxn];
int n,m;
int cmp(const int i,const int j)
{
return w[i]<w[j];
} //间接排序函数
int find(int x)
{
return p[x]==x?x:p[x]=find(p[x]);
}
int Kruskal()
{
int ans=;
for(int i=;i<n;i++) p[i]=i;//初始化并查集
for(int j=;j<m;j++) r[j]=j;//初始化边序号
sort(r,r+m,cmp);
for(int i=;i<m;i++)
{
int e=r[i];
int x=find(u[e]);
int y=find(v[e]);
//找到当前边两个端点所在的集合编号
if(x!=y)
{
ans+=w[e];
p[x]=y;
}
//如果在不同集合,合并
}
return ans;
}
int main()
{
int t;
cin>>t;
int flag[maxn][maxn];
memset(flag,,sizeof(flag));
n=,m=;
n=t;
int kiss;
for(int i=;i<t;i++)
{
for(int j=;j<t;j++)
{
cin>>kiss;
if(kiss==)
kiss=inf;
if(!flag[i][j])
{
flag[i][j]=;
flag[j][i]=;
u[m]=i;
v[m]=j;
w[m++]=kiss;
}
}
} cout<<Kruskal()<<endl;
return ;
}

wikioi 1078 最小生成树 Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  3. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  4. 最小生成树------Kruskal算法

    Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...

  5. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  6. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  7. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  8. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  9. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

随机推荐

  1. aarch64_c1

    CBFlib-0.9.5.15-3.fc26.aarch64.rpm 2017-02-06 06:55 393K fedora Mirroring Project CBFlib-devel-0.9.5 ...

  2. 一步一步搭建 oracle 11gR2 rac+dg之grid安装(四)【转】

    一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之grid安装 (四) 转自 一步一步搭建 oracle 11gR2 rac+d ...

  3. html5新增表单元素

    1.验证 <form> <input type="email"></input>    验证邮箱 <input type="ur ...

  4. 七、springcloud之配置中心Config(二)之高可用集群

    方案一:传统作法(不推荐) 服务端负载均衡 将所有的Config Server都指向同一个Git仓库,这样所有的配置内容就通过统一的共享文件系统来维护,而客户端在指定Config Server位置时, ...

  5. 获取矩形局域的方法,Rect、Bounds、Point

    获取一个点和矩形区域的方法如下: var R: TRect; procedure TForm5.FormCreate(Sender: TObject); begin RadioGroup1.Items ...

  6. IntelliJ IDEA 把Json字符串 增加到IDE里 用windows记事本 能自动转换(自动增加转义字符)

  7. 如何把自己的wordpress网站移到本地修改

    有时候wordpress更换模板时,需要修改的地方很多,而且在线修改不是很好.只能把它移动到电脑本地进行修改了.这样修改好就可以直接套用到网站上了. 1.通过服务器控制面板或FTP整站打包,发送到你已 ...

  8. C++有super关键字么?

    很多人在学习Java之后,看到Java里面有super关键字,用来表示父类,那么C++里面有super关键字么? 答案是否定的.这也很容易理解,C++由于支持多继承,所以假设存在super关键字,那么 ...

  9. IIS部署asp.net MVC 出现错误 403.14-Forbidden解决办法

    可能性一: <system.webServer>   <validationvalidateIntegratedModeConfiguration="false" ...

  10. java异常查看利器之使用 jvmti 的Callback_JVMTI_EVENT_EXCEPTION 事件查看异常

    阅读本文前需要了解什么是jvmti,jvmti全称称之为 JVM Tool Interface,有关jvmti更详细的知识,本文不再详细列出.大家可以借助百度来了解有关它更为详尽的内容. 在开源文件大 ...