LOJ.114.K大异或和(线性基)
如何求线性基中第K小的异或和?好像不太好做。
如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i])。
这可以重构一下线性基,从高到低位枚举i,如果base[i]在第j位(j<i)有值,那么Xor一下base[j]。(保证每一列只有一个1)
比如 1001(3)与0001(0),同时选0,3只比3要小;重构后是 1000(3)和0001(0),这样同时选0,3比只选0或3都要大。
这样将K二进制分解后就可以直接对应上线性基对应位的选择了。要存base[i]有值的i。
需要注意如果线性基中表示的向量不足n个,说明一定存在一组向量满足线性相关关系,即存在Xor和为0的情况。这样要使K减1。
判断是K>=(1<<size),线性基和的个数是2^{size}-1(不算0)。
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define Bit 51
typedef long long LL;
const int N=1e5+5;
int n,size,cnt;
LL base[69],b2[69];
char IN[MAXIN],*SS=IN,*TT=IN;
inline LL read()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void Insert(LL x)
{
for(int i=Bit; ~i; --i)
if(x>>i & 1)
if(base[i]) x^=base[i];
else {base[i]=x, ++size; break;}
}
inline LL Query(LL K)
{
LL ans=0;
for(int i=cnt; ~i; --i)
if(K>>i & 1) ans^=b2[i];
return ans;
}
void Rebuild()
{
for(int i=Bit; ~i; --i)
for(int j=i-1; ~j; --j)
if(base[i]>>j & 1) base[i]^=base[j];
for(int i=0; i<=Bit; ++i) if(base[i]) b2[cnt++]=base[i];
}
int main()
{
n=read();
for(int i=1; i<=n; ++i) Insert(read());
Rebuild();
for(int Q=read(); Q--; )
{
LL K=read()-(size!=n);//别在for里开int啊mmp
printf("%lld\n",(K>=(1ll<<size))?-1ll:Query(K));
}
return 0;
}
有一种不需要重构线性基的方法:询问时将K二进制拆分(按size位),若K在第j位有1,且当前答案在第i位没有1(还可以更大)或是 K在第j位没有1,且当前答案在第i位有1(偏小?),则ans^=base[i]。
不太理解。(随大流吧。。)
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define Bit 51
typedef long long LL;
const int N=1e5+5;
int n,size;
LL base[69];
char IN[MAXIN],*SS=IN,*TT=IN;
inline LL read()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void Insert(LL x)
{
for(int i=Bit; ~i; --i)
if(x>>i & 1)
if(base[i]) x^=base[i];
else {base[i]=x, ++size; break;}
}
inline LL Query(LL K)
{
LL ans=0;
for(int i=Bit,now=size; ~i; --i)
if(base[i])
if((K>>(--now) & 1)^(ans>>i & 1)) ans^=base[i];
return ans;
}
int main()
{
n=read();
for(int i=1; i<=n; ++i) Insert(read());
for(int Q=read(); Q--; )
{
LL K=read()-(size!=n);
printf("%lld\n",(K>=(1ll<<size))?-1ll:Query(K));
}
return 0;
}
LOJ.114.K大异或和(线性基)的更多相关文章
- Loj 114 k大异或和
Loj 114 k大异或和 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大. 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 ...
- [LOJ#114]k 大异或和
[LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和 ...
- 【loj114】k大异或和 线性基+特判
题目描述 给由 $n$ 个数组成的一个可重集 $S$ ,每次给定一个数 $k$ ,求一个集合 $T⊆S$ ,使得集合 $T$ 在 $S$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...
- LibreOJ #114. k 大异或和
二次联通门 : LibreOJ #114. k 大异或和 /* LibreOJ #114. k 大异或和 WA了很多遍 为什么呢... 一开始读入原数的时候写的是for(;N--;) 而重新构造线性基 ...
- 【线性基】51nod1312 最大异或和&LOJ114 k大异或和
1312 最大异或和 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 有一个正整数数组S,S中有N个元素,这些元素分别是S[0] ...
- LOJ114 k大异或和
传送门 (vjudge和hdu也有但是我觉得LOJ好看!而且限制少!) 不过本题描述有误,应该是k小. 首先我们需要对线性基进行改造.需要把每一位改造成为,包含最高位的能异或出来的最小的数. 为啥呢? ...
- 第k大异或值
这道题与2018年十二省联考中的异或粽子很相像,可以算作一个简易版: 因为这不需要可持久化: 也就是说求任意两个数异或起来的第k大值: 首先把所有数放进trie里. 然后二分答案,枚举每个数,相应地在 ...
- LOJ #113. 最大异或和 (线性基)
题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
随机推荐
- [转]QList内存释放
QList<T> 的释放分两种情况: 1.T的类型为非指针,这时候直接调用clear()方法就可以释放了,看如下测试代码 #include <QtCore/QCoreApplicat ...
- Java高性能并发编程——线程池
在通常情况下,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的 ...
- python小工具之读取host文件
# -*- coding: utf-8 -*- # @Time : 2018/9/12 21:09 # @Author : cxa # @File : readhostfile.py # @Softw ...
- Mysql5.6版本内存占用过高解决方法[链接]
传送门: http://blog.linsongzheng.com/archives/159.html
- mac搭建lamp环境
转载:https://www.cnblogs.com/beautiful-code/p/7465320.html
- JavaScript 中的回调函数
原文:http://javascriptissexy.com/ 翻译:http://blog.csdn.net/luoweifu/article/details/41466537 [建议阅读原文,以下 ...
- Spring cloud Feign 调用端不生效
如果提供方的接口经过测试是没问题的话. 消费方启动类加上@EnableFeignClients 注意定义的接口如果不和启动类在同一个包路径下,需要加basePackages 即:@EnableFeig ...
- Django配置https协议
本博客来自https://blog.csdn.net/huplion/article/details/52892901 1.首先我们需要得到一张证书文件 参考:WINDOWS系统下创建自签名SSL证书 ...
- Python学习笔记:lambda表达式
lambda表达式:通常是在需要一个函数,但又不想去命名一个函数的时候使用,即匿名函数. 示例如下: add = lambda x,y : x+ y add(1,2) # 结果为3 1.应用在函数式编 ...
- 2016-2017-2 20155309南皓芯java第四周学习总结
教材内容总结 这次我们学习的还是两章的内容,学习任务量跟上次比的话大体上来讲是差不多的. 继承与多态 继承 继承也符合DRY(Don't Repeat Yourself)原则 Role role1 = ...