嘟嘟嘟




很显然我开始学\(CDQ\)分治了。

我刚开始学的时候看了一篇博客,上面全是一些抽象的概念,看完后真是一头雾水,最后还不得不抄了这题的代码。

但这样可不行呀……

于是我就不打算再扣那篇博客,而是自己想,最后真的自己想明白了。




(个人感觉这道题跟\(CDQ\)分治关系不大)

首先想一下二维偏序:我们先按第一维排序,然后第二维动态的用树状数组维护。也就是说,得保证前几维都有序的前提下,才可以用数据结构维护最后一维。

现在换到了三维:所以我们必须保证在前两维有序的前提下,才能维护第三维。

首先都能想到,按第一维排序,这样就保证第一维有序了。

如何保证第二维\(y\)有序?如果硬排序,又会导致第一维\(x\)乱序。但是排序还是要排的。有没有一种排序方法能使第一维“不太乱”呢?

答案是有的:归并排序!对于区间\([L, R]\),虽然\([L, mid]\)和\([mid + 1, R]\)中的\(y\)有序,\(x\)乱序,但是\([mid + 1, R]\)中的任何一个元素的\(x\)仍是比\([L, mid]\)中的任何一个都大的!因此右区间相对于左区间保证了前两维有序,所以此时我们就能用树状数组维护第三维了!

这大概就是\(CDQ\)分治中的左修改只会对右询问造成影响的意思吧。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
const int maxm = 2e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m, k;
struct Node
{
int x, y, z, cnt, sum;
bool operator < (const Node& oth)const
{
if (x != oth.x) return x < oth.x;
if (y != oth.y) return y < oth.y;
return z < oth.z;
}
bool operator != (const Node& oth)const
{
return x != oth.x || y != oth.y || z != oth.z;
}
bool operator > (const Node& oth)const
{
if(y != oth.y) return y < oth.y;
return z <= oth.z;
}
}a[maxn], t[maxn]; int c[maxm];
int lowbit(int x)
{
return x & -x;
}
void init(int pos)
{
for(; pos <= k; pos += lowbit(pos))
if(c[pos] != 0) c[pos] = 0;
else break;
}
void add(int pos, int d)
{
for(; pos <= k; pos += lowbit(pos)) c[pos] += d;
}
int query(int pos)
{
int ret = 0;
for(; pos; pos -= lowbit(pos)) ret += c[pos];
return ret;
} void cdqSolve(int L, int R)
{
if(L == R) return;
int mid = (L + R) >> 1, id1 = L, id2 = mid + 1;
cdqSolve(L, mid); cdqSolve(mid + 1, R);
for(int i = L; i <= R; ++i)
{
if(id2 > R || (id1 <= mid && a[id1] > a[id2])) //这个大于号是比较第二维的,不是真正的大于号
{
t[i] = a[id1++];
add(t[i].z, t[i].cnt);
}
else
{
t[i] = a[id2++];
t[i].sum += query(t[i].z);
}
}
for(int i = L; i <= R; ++i) a[i] = t[i], init(a[i].z);//分治的每一层,别忘了清空树状数组
} int ans[maxn]; int main()
{
m = read(); k = read();
for(int i = 1; i <= m; ++i) t[i].x = read(), t[i].y = read(), t[i].z = read();
sort(t + 1, t + m + 1);
for(int i = 2, j = 1; i <= m + 1; ++i)
if(t[j] != t[i] || i == m + 1) a[++n] = t[j], a[n].cnt = i - j, j = i;
cdqSolve(1, n);
for(int i = 1; i <= n; ++i) ans[a[i].sum + a[i].cnt - 1] += a[i].cnt;
for(int i = 0; i < m; ++i) write(ans[i]), enter;
return 0;
}

luogu【模板】三维偏序(陌上花开)的更多相关文章

  1. luogu P3810 三维偏序(陌上花开)cdq分治

    题目链接 思路 对一维排序后,使用$cdq$分治,以类似归并排序的方法处理的二维,对于满足$a[i].b \leq a[j].b$的点对,用树状数组维护$a[i].c$的数量.当遇到$a[i].b&g ...

  2. [Luogu 3810]三维偏序

    Description 有 $ n $ 个元素,第 $ i $ 个元素有 $ a_i $ .$ b_i $ .$ c_i $ 三个属性,设 $ f(i) $ 表示满足 $ a_j \leq a_i $ ...

  3. Luogu P3810 【模板】三维偏序(陌上花开)(CDQ分治)

    题目 以三维偏序为例来讲一下CDQ分治. CDQ的本质就是把一个序列分成两段,计算左边对右边的贡献,然后分治. 不过一般都是先分治到底再从下往上算,这样可以先归并再算. 比如这道题,我们先按第一维排序 ...

  4. P3810 【模板】三维偏序(陌上花开)

    P3810 [模板]三维偏序(陌上花开) cdq分治+树状数组 三维偏序模板题 前两维用cdq分治,第三维用树状数组进行维护 就像用树状数组搞逆序对那样做--->存权值的出现次数 attenti ...

  5. Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治

    Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...

  6. P3810 【模板】三维偏序(陌上花开)(CDQ分治)

    题目背景 这是一道模板题 可以使用bitset,CDQ分治,K-DTree等方式解决. 题目描述 有 nn 个元素,第 ii 个元素有 a_iai​.b_ibi​.c_ici​ 三个属性,设 f(i) ...

  7. 洛谷P3810 陌上花开 CDQ分治(三维偏序)

    好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...

  8. P3810 -三维偏序(陌上花开)cdq-分治

    P3810 [模板]三维偏序(陌上花开) 思路 :按照 1维排序 二维 分治三维树状数组维护 #include<bits/stdc++.h> using namespace std; #d ...

  9. BZOJ3262:陌上花开 & 洛谷3810:三维偏序——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/3810 Desc ...

  10. BZOJ3262 陌上花开 —— 三维偏序 CDQ分治

    题目链接:https://vjudge.net/problem/HYSBZ-3262 3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit ...

随机推荐

  1. Redis到底是多线程还是单线程?线程安全吗

    redis是单线程,线程安全 redis可以能够快速执行的原因: (1) 绝大部分请求是纯粹的内存操作(非常快速)(2) 采用单线程,避免了不必要的上下文切换和竞争条件(3) 非阻塞IO - IO多路 ...

  2. 如何优雅的爬取 gzip 格式的页面并保存在本地(java实现)

    1. 引言 在爬取汽车销量数据时需要爬取 html 保存在本地后再做分析,由于一些页面的 gzip 编码格式, 获取后要先解压缩,否则看到的是一片乱码.在网络上仔细搜索了下,终于在这里找到了一个优雅的 ...

  3. 分布式理论基础(一)一致性及解决一致性的两种方式:2PC和3PC (转载 不错)

    分布式理论基础(一)一致性及解决一致性的两种方式:2PC和3PC 1 一致性 1.1 简述 一致性,是指对每个节点一个数据的更新,整个集群都知道更新,并且是一致的 假设一个具有N个节点的分布式系统,当 ...

  4. SQL0286N 找不到页大小至少为 "8192"、许可使用授权标识 "db2inst" 的缺省表空间。

    在 SQL 处理期间,它返回: SQL0286N  找不到页大小至少为 "8192".许可使用授权标识 "db2inst" 的缺省表空间. 顾名思义,DB2默认 ...

  5. 【学习笔记】--- 老男孩学Python,day10, 函数, 动态参数 命名空间\作用域 global nonlocal

    1. 动态参数 位置参数的动态参数: *args 关键字参数的动态参数 : **kwargs 顺序:位置---*args---默认值---**kwargs 在形参上*聚合, **聚合 在实参上*打散, ...

  6. 备忘:CSS术语词汇表——张鑫旭

    一.叨点什么 写文章的时候经常用到一些CSS方面的专业词汇.但是毕竟芳华年少不在,脑袋有点秀逗了,很多名词都记不住,这种感觉比厕所便秘还难受.比如今天居然记不起来公司公认脸蛋最pp的同事的名字,没想到 ...

  7. 在vue-cli中使用layer中的layData日期组件

    有朋友问我怎么在vue-cli项目中使用layui中的layData组件,有时间从网上查了下写下篇文章. 1.首先去layData官网把文件包下载下来,解压出来的laydate文件夹整个放在vue-c ...

  8. angular自定义指令 repeat 循环结束事件;limitTo限制循环长度、限定开始位置

    1.获取repeat循环结束: 自定义指令: .directive('repeatFinish', function () { return { link: function (scope, elem ...

  9. Jquery插件网站持续添加。。。

    Look Fro Less,Do More www.jq22.com

  10. 使用IntelliJ IDEA配置Erlang开发环境

    这篇文章比较详细,感谢作者,拷贝过来做个记录 ————————————————————————————————————————————————————————————————————————————— ...