【FCS NOI2018】福建省冬摸鱼笔记 day2
第二天。
同学还是不带本子记笔记。dalao。
第二天:图论,讲师:@ExfJoe
全程划水,前面都讲水算法【虽然我可能已经忘记了】什么最短路,Tarjan,最小生成树,2SAT,差分约束啥的,我现在肯定写不出来啦。
后面题目也还挺好,可能是听的比较懂的一天吧。不过也很有挑战性。
中午划水
还以为下午的题目会和上午有关系,事实证明我想太多。
T1想了个错误分块,写了n久挂了,不想调,正解主席树。
T2简单数学题,瞎推式子就完了,后悔没有去做啊。
T3毒瘤模拟题,什么切比雪夫,什么曼哈顿,什么奇偶分开,反正不想做。
爆零选手很难受。
【T2】
题面:对两个排列定义函数\(F(P_1,P_2)=\sum_{l=1}^{n}\sum_{r=l}^{n}f_{E}(P_1[l\cdots r],P_2[l\cdots r])\)。而\(f_{E}(a,b)\)表示\(a,b\)离散后顺序是否一样,且\(a,b\)的逆序对数是否不超过\(E\),例如\(f_{1}([2,1,3],[6,3,8])=1\),\(f_{30}([2,1,3],[3,2,1])=0\),\(f_{0}([1,3,2],[1,3,2])=0\)。
求出当\(P_1,P_2\)取遍所有\(1\sim n\)的全排列时,\(F(P_1,P_2)\)的和。
题解:分开考虑每一个\([l\cdots r]\)的贡献,瞎推式子瞎计算,得到答案:\(\sum_{i=1}^{n}(n-i+1)f(i,E)(\frac{n!}{i!})^2\),\(f(i,j)\)表示长度为\(i\),逆序对数不超过\(j\)的全排列数量。
\(f(i,j)\)可以\(O(n^3)\)预处理DP。这题就做完了。
#include<cstdio>
#define Mod 1000000007
int n,E;
int f[][];
int fra[],inv[];
inline int Min(int x,int y){return x<y?x:y;}
inline int Mo(int x){return x>=Mod?x-Mod:(x<-Mod?x+(Mod<<):(x<?x+Mod:x));}
void init(){
f[][]=;
for(int i=,s,t;i<=;++i){
f[i][]=; s=i*(i-)/; t=(i-)*(i-)/;
for(int j=;j<=s;++j)
f[i][j]=Mo(f[i][j-]+(j<=t?f[i-][j]:f[i-][t])-(j>=i?f[i-][j-i]:));
}
fra[]=inv[]=;
for(int i=;i<=;++i) fra[i]=1ll*fra[i-]*i%Mod;
for(int i=;i<=;++i) fra[i]=1ll*fra[i]*fra[i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*inv[i-]*inv[i]%Mod;
for(int i=;i<=;++i) inv[i]=1ll*inv[i]*inv[i]%Mod;
}
int main(){
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
init();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&E);
long long ans=;
for(int i=;i<=n;++i)
ans=Mo(ans+1ll*(n-i+)*inv[i]%Mod*f[i][Min(E,i*(i-)/)]%Mod);
ans=1ll*ans*fra[n]%Mod;
printf("%d\n",ans);
}
return ;
}
【FCS NOI2018】福建省冬摸鱼笔记 day2的更多相关文章
- 【FCS NOI2018】福建省冬摸鱼笔记 day1
省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day6【FJOI 2018】福建省选混分滚蛋记 day1
记录一下day6发生的事情吧. 7:30 到达附中求索碑,被人膜,掉RP. 7:50 进考场,6楼的最后一排的最左边的位置,世界上最角落的地方,没有任何想法. 发现电脑时间和别人不一样,赶快调了一下. ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day3
第三天. 计算几何,讲师:叶芃(péng). dalao们日常不记笔记.@ghostfly233说他都知道了,就盼着自适应辛普森积分. 我计算几何基础不好……然而还是没怎么讲实现,感觉没听什么东西进去 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day5
第五天,也是讲课的最后一天. 数据结构专题,讲师:杨志灿 他的blog我似乎找不到了……以前肯定是在百度博客里面.但是现在百度博客消失了. PPT做的很有感觉,说了很多实用的技巧. 我觉得其实是收获最 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day4
第四天. 动态规划专题,讲师:闫神 讲了一些DP优化技巧,然而思想难度好大啊……根本没想到能优化那地步,连DP方程都没有呢. 不过有几题我还是想明白了. 讲了单调队列,决策单调性,四边形不等式,斜率优 ...
- Hash 日常摸鱼笔记
本篇文章是Hash在信息学竞赛中的应用的学习笔记,分多次更新(已经有很多坑了) 一维递推 首先是Rabin-Karp,对于一个长度为\(m\)的串\(S\) \(f(S)=\sum_{i=1}^{m} ...
- 可持久化Treap 赛前摸鱼笔记
1.基本结构 随机化工具 unsigned int SEED = 19260817; //+1s inline int Rand(){ SEED=SEED*1103515245+12345; retu ...
- [摸鱼]cdq分治 && 学习笔记
待我玩会游戏整理下思绪(分明是想摸鱼 cdq分治是一种用于降维和处理对不同子区间有贡献的离线分治算法 对于常见的操作查询题目而言,时间总是有序的,而cdq分治则是耗费\(O(logq)\)的代价使动态 ...
- HNOI2018 摸鱼记
HNOI2018 摸鱼记 今天我又来记流水账啦 Day 0 颓废的一天. 我,球爷和杜教在颓膜膜.io ych看起来在搓碧蓝 鬼知道哥达鸭干了什么 学习氛围只局限在机房的一角 后来全体Oier开会,5 ...
随机推荐
- linux下安装jenkins
我们不用离线安装方式 第一步.必须验证java环境 第二步.我们这里使用yum命令进行在线安装,使用service命令进行启动 1.wget -O /etc/yum.repos.d/jenkins.r ...
- 栈java实现
这几天,过得挺充实的,每天都在不停的上课,早上很早就起来去跑步,晚上到图书馆看书.一边紧张的学习,一边在默默的备战软考.最近还接手了一个公司官网的建设.这是我在川信最后的一个完整学期了,每件事我都要认 ...
- Vivian's Problem UVA - 1323(梅林素数+状压二进制)
借鉴:https://blog.csdn.net/miku23736748/article/details/52135932 https://blog.csdn.net/acm_cxlove/arti ...
- # DZY Love Math 系列
DZY Love Math 系列 [BOZJ3309] DZY Loves Math 顺着套路就能得到:\(Ans = \sum_{T=1}\lfloor \frac{n}{T} \rfloor \l ...
- 【Learning】常系数线性齐次递推
给定数列前k项\(h_0...h_{k-1}\),其后的项满足:\(h_i=\sum_{i=1}^kh_{i-j}a_i\),其中\(a_1...a_k\)是给定的系数,求\(h_n\) 数据范围小的 ...
- Django JSON 时间
在views.py中导入: from django.core.serializers.json import DjangoJSONEncoder 在返回JSON数据时调用: return HttpRe ...
- bzoj 2120
2120: 数颜色 Time Limit: 6 Sec Memory Limit: 259 MBSubmit: 6430 Solved: 2562[Submit][Status][Discuss] ...
- R语言:克里金插值
基于空间自相关,R语言克里金插值 library(gstat) Warning message: In scan(file = file, what = what, sep = sep, quote ...
- Hadoop生态圈-phoenix(HBase)的索引配置
Hadoop生态圈-phoenix(HBase)的索引配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 创建索引是为了优化查询,我们可以在phoenix上配置索引方式. 一.修改 ...
- 科学计算三维可视化---Mlab基础(改变物体的外观颜色)
import numpy as np from mayavi import mlab #建立数据 x,y = np.mgrid[-::200j,-::200j] z = *np.sin(x*y)/(x ...