hdu 5600 N bulbs 想法+奇偶讨论
http://acm.hdu.edu.cn/showproblem.php?pid=5600
本文重在分析该题目的思路,代码极其短,但是想到这个题目的思路却是挺复杂的过程。
思路
自己拿到题目也想到了很多,用了一些小的样例去找寻一些规律,但是还是没有完全找到方法。 这个题目中重要的一点是你要能发现操作次数个数与N的奇偶的规律,(N是电灯的个数)N是奇数,操作次数一定是奇数,N是偶数,操作次数是偶数。 那么这幅图可以直观的理解上面这个结论。

下面你还可以得到一个结论,如果我要是的所有的灯全部熄灭的话,1要变0,0还得是0,1的操作次数一定是奇数次,0的操作次数一定是偶数次。 我们可以得到下面这个公式

所以我们毫无疑问地要说,如果1的个数的奇偶关系与N的奇偶不同那么它一定不可以全部熄灭。
接下来,如果1的个数与N的个数奇偶相同,那0的个数是一定是偶数,那么也就是说在整个序列里,0可以两个两个的取,回到之前找规律时发现的一个重要特点:我们发现当我们从1走到i时,假设我们往回走到左边某个点k,再走回来i,那么你会发现有且仅有k和i这两个数相当于没有操作(因为走了偶数次)。也就是说我们可以每次任意选择这个序列里的两个0作为没有操作,然而不需操作的0的个数恰好是偶数个。
见下图

代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int t,n,num,c;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
c = ;
for(int i = ;i<=n;i++)
{
scanf("%d",&num);
if(num==)
c++;
}
if((c%)==(n%))
printf("YES\n");
else
printf("NO\n");
}
return ;
}
hdu 5600 N bulbs 想法+奇偶讨论的更多相关文章
- BestCoder Round #67 (div.2) N bulbs(hdu 5600)
N bulbs Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- HDU 5375——Gray code——————【dp||讨论】
Gray code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- HDU 6665 Calabash and Landlord (分类讨论)
2019 杭电多校 8 1009 题目链接:HDU 6665 比赛链接:2019 Multi-University Training Contest 8 Problem Description Cal ...
- HDU 1010Tempter of the Bone(奇偶剪枝回溯dfs)
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- hdu 5600 BestCoder Round #67 (div.2)
N bulbs Accepts: 275 Submissions: 1237 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 655 ...
- hdu 4655 Cut Pieces(想法题)
Cut Pieces Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) Tota ...
- HDU 2147 kiki's game (奇偶博弈)
题意:给定一个 n * m 的格子,从右上角(1, m) 开始每个玩家只能从向下,向左,或者向左下走,谁不能走,谁输. 析:自己做出来,看了网上的几个博客,好像都没说为什么是只有全奇的情况才会输,个人 ...
- HDU 5705 Clock(模拟,分类讨论)
Clock Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submi ...
- HDU——PKU题目分类
HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...
随机推荐
- NOI-linux下VIM的个人常用配置
路径:/etc/vim/vimrc 打开终端:Ctrl+Alt+T 输入:sudo vim或gedit /etc/vim/vimrc (推荐用gedit,更好操作) 以下是我的配置: "我的 ...
- perl智能匹配
1.perl中~~为智能匹配,它能够智能地依据符号两側的操作数来确定操作. 如要推断某个元素是否存在于数组中,不使用智能匹配,程序像这样: my $x=2; my @array=(1,2,3); my ...
- Android Resources
Ref:Android开发最佳实践 Ref:Android高手速成--第一部分 个性化控件(View) Ref:Android高手速成--第二部分 工具库 Ref:Android高手速成--第三部分 ...
- print函数详解及python打印99乘法表的不同方法
首先你需要了解print的原型,并且要知道在python2和python3中print函数功能不同,不只是表现在后面带不带()一方面! 在python3中,通过help(print)可以得到print ...
- ADO.NET概述
xml这类文件它是.net变成环境中优先使用的数据访问借口. ADO.NET传输的数据都是XML格式的 ADO.NET是一组用于和数据源惊醒交互的面向对象类库 数据源:通常是各种数据库,但文本.exc ...
- Java中byte转换int时与0xff进行与运算的原因
http://w.baike.com/LGAdcWgJBBQxRAHUf.html 转帖 java中byte转换int时为何与0xff进行与运算 在剖析该问题前请看如下代码 public static ...
- rails 运维常用命令
创建生产环境数据库并执行迁移 $ RAILS_ENV=production rake db:create$ RAILS_ENV=production rake db:migrate RAILS_ENV ...
- 网络编程概述和IP地址的获取方法
java网络通信概述 一.网络通信步骤: 主机1 主机2 QQ-------QQ FEIQ-----FEIQ 1.找到对方IP. 2.找到对方端口号.数据要发送到对方的应用程序上.为了标识这些应用程序 ...
- path.join()和path.resolve()区别
一.区别 1.path.join() 方法使用平台特定的分隔符作为定界符将所有给定的 path 片段连接在一起,然后规范化生成的路径. 2.path.resolve() 方法将路径或路径片段的序列解析 ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...