题意翻译

约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体.

通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为0.

请帮助约翰决定对哪些小径进行升级,使他每天从1号牧场到第N号牧场所花的时间最短

题目描述

Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= 50,000) trails conveniently numbered 1..M from pasture 1 all the way out to pasture N (a journey which is always possible for trail maps given in the test data). The N (1 <= N <= 10,000) pastures conveniently numbered 1..N on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures P1_i and P2_i (1 <= P1_i <= N; 1 <= P2_i <= N) and requires T_i (1 <= T_i <= 1,000,000) units of time to traverse.

He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose K (1 <= K <= 20) trails to turn into highways, which will effectively reduce the trail's traversal time to 0. Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture 1 to N.

TIME LIMIT: 2 seconds

输入输出格式

输入格式:

* Line 1: Three space-separated integers: N, M, and K

* Lines 2..M+1: Line i+1 describes trail i with three space-separated integers: P1_i, P2_i, and T_i

输出格式:

* Line 1: The length of the shortest path after revamping no more than K edges

输入输出样例

输入样例#1:
复制

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100
输出样例#1: 复制

1

说明

K is 1; revamp trail 3->4 to take time 0 instead of 100. The new shortest path is 1->3->4, total traversal time now 1.

比较裸的题目,与之相似的是:[JLOI2011]飞行路线

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m, k;
int d[maxn][30];
int vis[maxn][30];
vector<pii>vc[maxn];
int s, t; struct node {
int v, lev, dis;
node(){}
node(int v,int lev,int dis):v(v),lev(lev),dis(dis){}
bool operator < (const node&rhs)const {
return dis > rhs.dis;
}
}; priority_queue<node>q; int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); rdint(k);
for (int i = 1; i <= m; i++) {
int u, v, w;
rdint(u); rdint(v); rdint(w);
vc[u].push_back(make_pair(v, w));
vc[v].push_back(make_pair(u, w));
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= k; j++)d[i][j] = inf;
}
d[1][0] = 0;
q.push(node(1, 0, 0));
while (!q.empty()) {
node tmp = q.top(); q.pop();
int to = tmp.v, lev = tmp.lev;
if (vis[to][lev])continue;
vis[to][lev] = 1;
vector<pii>::iterator it;
for (it = vc[to].begin(); it != vc[to].end(); it++) {
int y = (*it).first, w = (*it).second;
if (d[y][lev] > d[to][lev] + w) {
d[y][lev] = d[to][lev] + w;
q.push(node(y, lev, d[y][lev]));
}
if (lev < k) {
if (d[y][lev + 1] > d[to][lev]) {
d[y][lev + 1] = d[to][lev];
q.push(node(y, lev + 1, d[y][lev + 1]));
}
}
}
}
int ans = d[n][0];
for (int i = 1; i <= k; i++) {
ans = min(ans, d[n][i]);
}
cout << ans << endl;
return 0;
}

[USACO09FEB]改造路Revamping Trails 分层最短路 Dijkstra BZOJ 1579的更多相关文章

  1. P2939 [USACO09FEB]改造路Revamping Trails

    P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...

  2. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解

    P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...

  3. 洛谷P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...

  4. [USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线

    题目链接: 改造路 飞行路线 其实这两道题基本上是一样的,就是分层图的套路题. 为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间.然后因为选择一个边权为0的路线之后我们 ...

  5. P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)

    传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...

  6. 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  7. 分层图【p2939】[USACO09FEB]改造路Revamping Trails

    Description 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小 ...

  8. [USACO09FEB]改造路Revamping Trails

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  9. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

随机推荐

  1. [更新中]【fit-flow使用总结】djang开发中git flow使用总结

    djang开发中git flow使用总结 初次接触可以先看看此链接上关于git flow的东西http://danielkummer.github.io/git-flow-cheatsheet/ind ...

  2. Nginx配置文件中文注释详解

    Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器. Nginx 是由 Igor Sysoev ...

  3. 回调函数(callback)经典解答

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:常溪玲链接:http://www.zhihu.com/question/19801131/answer/13005983来源: ...

  4. jQuery的AJax异步加载

    主要用到load()方法以及getScript()方法,具体以一个例子说明: 在现有html文件中加载一个拟好的片段,以及在片段加载完成之前阻止用户进一步操作的弹出框. 首先是现有html代码,无任何 ...

  5. ionic 页面乱码

    是文本编辑器的问题.文本编辑器保存时默认保存成Encoding:ANSI编码格式,保存成utf-8就好了

  6. 使用网络用户命令行工具的/passwordreq:yes

    提示:"新建域时,本地administrator帐户将成为域administrator账户.无法新建域,因为本地administrator账户密码不符合要求.目前,本地administrat ...

  7. 窗体控件JFrame的使用

    ---------------siwuxie095 工程名:TestUI 包名:com.siwuxie095.ui 类名:MyFrame.java 工程结构目录如下: 在 Source 界面和 Des ...

  8. Apollo问题

    1.安装问题: 一不小心安装了NVIDIA,导致bash docker/scripts/dev_start.sh无法启动:[ERROR] Failed to start docker containe ...

  9. 添加超级链接为什么用a标签

    a是anchor的简写,中文意思是锚点,而锚点的引申意思是连接,link已经被html占用了,只能用a来表示连接了.

  10. 单引号和0的ASCII码

    单引号的ASCII码为0xfe. 那么0xfefe,就表示''. 0的ACSII码为0x30.