[USACO09FEB]改造路Revamping Trails 分层最短路 Dijkstra BZOJ 1579
题意翻译
约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体.
通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为0.
请帮助约翰决定对哪些小径进行升级,使他每天从1号牧场到第N号牧场所花的时间最短
题目描述
Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= 50,000) trails conveniently numbered 1..M from pasture 1 all the way out to pasture N (a journey which is always possible for trail maps given in the test data). The N (1 <= N <= 10,000) pastures conveniently numbered 1..N on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures P1_i and P2_i (1 <= P1_i <= N; 1 <= P2_i <= N) and requires T_i (1 <= T_i <= 1,000,000) units of time to traverse.
He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose K (1 <= K <= 20) trails to turn into highways, which will effectively reduce the trail's traversal time to 0. Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture 1 to N.
TIME LIMIT: 2 seconds
输入输出格式
输入格式:
* Line 1: Three space-separated integers: N, M, and K
* Lines 2..M+1: Line i+1 describes trail i with three space-separated integers: P1_i, P2_i, and T_i
输出格式:
* Line 1: The length of the shortest path after revamping no more than K edges
输入输出样例
说明
K is 1; revamp trail 3->4 to take time 0 instead of 100. The new shortest path is 1->3->4, total traversal time now 1.
比较裸的题目,与之相似的是:[JLOI2011]飞行路线
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m, k;
int d[maxn][30];
int vis[maxn][30];
vector<pii>vc[maxn];
int s, t; struct node {
int v, lev, dis;
node(){}
node(int v,int lev,int dis):v(v),lev(lev),dis(dis){}
bool operator < (const node&rhs)const {
return dis > rhs.dis;
}
}; priority_queue<node>q; int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); rdint(k);
for (int i = 1; i <= m; i++) {
int u, v, w;
rdint(u); rdint(v); rdint(w);
vc[u].push_back(make_pair(v, w));
vc[v].push_back(make_pair(u, w));
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= k; j++)d[i][j] = inf;
}
d[1][0] = 0;
q.push(node(1, 0, 0));
while (!q.empty()) {
node tmp = q.top(); q.pop();
int to = tmp.v, lev = tmp.lev;
if (vis[to][lev])continue;
vis[to][lev] = 1;
vector<pii>::iterator it;
for (it = vc[to].begin(); it != vc[to].end(); it++) {
int y = (*it).first, w = (*it).second;
if (d[y][lev] > d[to][lev] + w) {
d[y][lev] = d[to][lev] + w;
q.push(node(y, lev, d[y][lev]));
}
if (lev < k) {
if (d[y][lev + 1] > d[to][lev]) {
d[y][lev + 1] = d[to][lev];
q.push(node(y, lev + 1, d[y][lev + 1]));
}
}
}
}
int ans = d[n][0];
for (int i = 1; i <= k; i++) {
ans = min(ans, d[n][i]);
}
cout << ans << endl;
return 0;
}
[USACO09FEB]改造路Revamping Trails 分层最短路 Dijkstra BZOJ 1579的更多相关文章
- P2939 [USACO09FEB]改造路Revamping Trails
P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...
- 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解
P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...
- 洛谷P2939 [USACO09FEB]改造路Revamping Trails
题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...
- [USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线
题目链接: 改造路 飞行路线 其实这两道题基本上是一样的,就是分层图的套路题. 为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间.然后因为选择一个边权为0的路线之后我们 ...
- P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)
传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...
- 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)
题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...
- 分层图【p2939】[USACO09FEB]改造路Revamping Trails
Description 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小 ...
- [USACO09FEB]改造路Revamping Trails
题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...
- 洛谷 P2939 [USACO09FEB]改造路Revamping Trails
题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...
随机推荐
- javascript——对象的概念——函数 1 (函数对象的属性和方法)
一.创建函数 函数是一种对象:Function类 是对象,可以通过 Function 实例化一个函数,不过最多的还是利用 function 来创建函数. 方式一:利用 Function类 来实例化函数 ...
- SqlServer——用户自定义函数
在SQL Server中,用户不仅可以使用标准的内置函数,也可以使用自己定义的函数来实现一些特殊的功能.可以使用CREATE FUNCTION 语句创建.在创建时需要注意:函数名在数据库中必须唯一, ...
- 类型:Jquery;问题:jquery调用后台带参数方法;结果:利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法。
利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法. [WebMethod] 命名空间 1.无参数的方法调用, 注意:1.方法一定要静态方法,而且要有[WebMethod] ...
- EF CODEFIRST WITH ORACLE 存储过程
EF CODEFIRST WITH ORACLE 解决存储过程一直没找到解决方案 所以最后也没办法还是用了最基本的解决方案 采用Oracle.ManagedDataAccess提供的ADO基础访问类 ...
- 浅谈时钟的生成(js手写代码)(非原创)
在生成时钟的过程中自己想到布置表盘的写法由这么几种: 当然利用那种模式都可以实现,所以我们要用一个最好理解,代码有相对简便的方法实现 1.利用三角函数 用js在三角函数布置表盘的过程中有遇见到这种情况 ...
- Ajax入门(二)Ajax函数封装
如果看了的我上一篇博客<Ajax入门(一)从0开始到一次成功的GET请求>的话,肯定知道我们已经完成了一个简单的get请求函数了.如下: 1234567891011121314151617 ...
- Maven核心概念(转)
转自 https://www.cnblogs.com/xdp-gacl/p/4051819.html 一.Maven坐标 1.1.什么是坐标? 在平面几何中坐标(x,y)可以标识平面中唯一的一点. 1 ...
- cmake中设置ELF文件加载动态库的位置
1. 三个文件 1. world.c #include<stdio.h> void world(void) { printf("world.\n"); } 2. hel ...
- vray学习笔记(1)vray介绍
vray是个什么东西? 它是个渲染器. 渲染器是个什么东西? 渲染器就是3d软件里面把模型画成一张图片的东西,渲染的过程就是把3D物体变成2D画面的过程. 模型是个什么东西? 模型就是模型,它由两部分 ...
- Luogu 2151 [SDOI2009]HH去散步
BZOJ 1875 矩阵乘法加速递推. 如果不要求不能走同一条边,那么直接构造出矩阵快速幂即可,但是不走相同的道路,怎么办? 发现边数$m$也很小,我们直接把$2 * m$开成一个矩阵,相当于记录上一 ...