题面

传送门

题解

我们设\(A=\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}\),那么\(A^n\)的左上角就是\(F\)的第\(n\)项

所以我们现在转化为求

\[\sum_{i=0}^n[k|i]{n\choose i}A^i
\]

把\([k|i]\)单位根反演一下

\[\begin{aligned}
ans
&=\sum_{i=0}^n[k|i]{n\choose i}A^i\\
&={1\over k}\sum_{i=0}^n{n\choose i}A^i\sum_{j=0}^{k-1}\omega^{ij}_k\\
&={1\over k}\sum_{j=0}^{k-1}\sum_{i=0}^n{n\choose i}A^i\omega^{ij}_k\\
&={1\over k}\sum_{j=0}^{k-1}\left(A\omega_k^j+E\right)^n\\
\end{aligned}
\]

其中\(E\)表示单位矩阵

注意,这里能用二项式定理是因为\(A,E\)之间满足交换律,如果是普通的矩阵是不能这么做的

然后求个原根就行了(话说我今天才知道该怎么求原根)

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=5e5+5;
int p[N],P,g,tot,k,w,wn;ll n;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct Matrix{
int a[2][2];
inline Matrix(){a[0][0]=a[0][1]=a[1][0]=a[1][1]=0;}
inline int* operator [](const int &x){return a[x];}
Matrix operator *(Matrix b){
Matrix res;
res[0][0]=(1ll*a[0][0]*b[0][0]+1ll*a[0][1]*b[1][0])%P;
res[0][1]=(1ll*a[0][0]*b[0][1]+1ll*a[0][1]*b[1][1])%P;
res[1][0]=(1ll*a[1][0]*b[0][0]+1ll*a[1][1]*b[1][0])%P;
res[1][1]=(1ll*a[1][0]*b[0][1]+1ll*a[1][1]*b[1][1])%P;
return res;
}
Matrix operator +(Matrix b){
Matrix res;
res[0][0]=add(a[0][0],b[0][0]);
res[0][1]=add(a[0][1],b[0][1]);
res[1][0]=add(a[1][0],b[1][0]);
res[1][1]=add(a[1][1],b[1][1]);
return res;
}
Matrix operator *(const int &x){
Matrix res;
res[0][0]=mul(a[0][0],x);
res[0][1]=mul(a[0][1],x);
res[1][0]=mul(a[1][0],x);
res[1][1]=mul(a[1][1],x);
return res;
}
}E,A,ans;
Matrix ksm(Matrix x,ll y){
Matrix res;res[0][0]=res[1][1]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
void getrt(){
int phi=P-1,x=phi;tot=0;
for(R int i=2;1ll*i*i<=x;++i)if(x%i==0){
p[++tot]=i;
while(x%i==0)x/=i;
}
if(x>1)p[++tot]=x;
fp(i,2,phi){
x=0;
fp(j,1,tot)if(ksm(i,phi/p[j])==1){x=1;break;}
if(!x)return g=i,void();
}
}
int main(){
// freopen("testdata.in","r",stdin);
E[0][0]=E[1][1]=A[0][0]=A[0][1]=A[1][0]=1;
int T;scanf("%d",&T);
while(T--){
scanf("%lld%d%d",&n,&k,&P);
ans=Matrix(),getrt(),w=ksm(g,(P-1)/k),wn=1;
fp(i,0,k-1)ans=ans+ksm(A*wn+E,n),wn=mul(wn,w);
printf("%d\n",mul(ans[0][0],ksm(k,P-2)));
}
return 0;
}

bzoj3328: PYXFIB(单位根反演+矩阵快速幂)的更多相关文章

  1. BZOJ3328 PYXFIB 单位根反演

    题意:求 \[ \sum_{i=0}^n[k|i]\binom{n}{i}Fib(i) \] 斐波那契数列有简单的矩阵上的通项公式\(Fib(n)=A^n_{1,1}\).代入得 \[ =\sum_{ ...

  2. BZOJ 3328: PYXFIB 单位根反演+矩阵乘法+二项式定理

    如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freo ...

  3. 【BZOJ3328】PYXFIB(单位根反演,矩阵快速幂)

    [BZOJ3328]PYXFIB(单位根反演,矩阵快速幂) 题面 BZOJ 题解 首先要求的式子是:\(\displaystyle \sum_{i=0}^n [k|i]{n\choose i}f_i\ ...

  4. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  5. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  6. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  7. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  8. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  9. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

随机推荐

  1. Spark on yarn的两种模式 yarn-cluster 和 yarn-client

    从深层次的含义讲,yarn-cluster和yarn-client模式的区别其实就是Application Master进程的区别,yarn-cluster模式下,driver运行在AM(Applic ...

  2. 【转】轻舞飞扬 LTE基本架构

    这篇文章主要介绍LTE的最基础的架构,包括LTE网络的构成,每一个网络实体的作用以及LTE网络协议栈,最后还包括对一个LTE数据流的模型的说明. LTE网络参考模型 这是一张非常有名的LTE架构图,从 ...

  3. maven如何过滤占位符

    今天遇到一个问题,就是properties文件中赋值用的这种形式${xxx},真正的值是配置在pom的profile中,但是未生效. 后来找到原因,原来是pom中少了一段代码: <build&g ...

  4. Excel开发学习笔记:读取xml文件及csv文件

    遇到一个数据处理自动化的问题,于是打算开发一个基于excel的小工具.在业余时间一边自学一边实践,抽空把一些知识写下来以备今后参考,因为走的是盲人摸象的野路子,幼稚与错误请多包涵. ).Split(  ...

  5. 数据库:ubantu下MySQL数据库备份方法

    1.编辑/etc/crontab文件设定定时任务,在制定时间执行backup_databases.sh vi /etc/crontab # /etc/crontab: system-wide cron ...

  6. PowerDesigner的CDM模型将低驼峰命名法则的每个大写字母前加_符

    Option   Explicit ValidationMode   =   True InteractiveMode =   im_Batch Dim   mdl   '当前model '获取当前活 ...

  7. struct-config.xml配置文件的解析

    //定义了xml文件的版本和编码<?xml version="1.0" encoding="UTF-8"?>//配置文件中的元素必须按照下述doc指 ...

  8. ActiveMQ (三) Spring整合JMS入门

    Spring整合JMS入门 前提:安装好了ActiveMQ  ActiveMQ安装 Demo结构:   生产者项目springjms_producer: pom.xml <?xml versio ...

  9. 使用git将代码传到github

    廖雪峰git教程:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 注:add加入 ...

  10. 【总结整理】天地图WMTS服务与卫星图匹配与坐标转换

    http://blog.sina.com.cn/s/blog_60abbd570102wnhh.html