Oracle

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 79    Accepted Submission(s): 41

Problem Description
There is once a king and queen, rulers of an unnamed city, who have three daughters of conspicuous beauty.

The
youngest and most beautiful is Psyche, whose admirers, neglecting the
proper worship of the love goddess Venus, instead pray and make
offerings to her. Her father, the king, is desperate to know about her
destiny, so he comes to the Delphi Temple to ask for an oracle.

The oracle is an integer n without leading zeroes.

To
get the meaning, he needs to rearrange the digits and split the number
into <b>two positive integers without leading zeroes</b>,
and their sum should be as large as possible.

Help him to work out the maximum sum. It might be impossible to do that. If so, print `Uncertain`.

 
Input
The first line of the input contains an integer T (1≤T≤10), which denotes the number of test cases.

For each test case, the single line contains an integer n (1≤n<1010000000).

 
Output
For each test case, print a positive integer or a string `Uncertain`.
 
Sample Input
3
112
233
1
 
Sample Output
22
35
Uncertain

Hint

In the first example, it is optimal to split $ 112 $ into $ 21 $ and $ 1 $, and their sum is $ 21 + 1 = 22 $.

In the second example, it is optimal to split $ 233 $ into $ 2 $ and $ 33 $, and their sum is $ 2 + 33 = 35 $.

In the third example, it is impossible to split single digit $ 1 $ into two parts.

 
Source
 
题意:将一个大数分解成两个数字,要求两个数字是没有前导0的正整数,然后问相加的结果的最大值.
题解:先对输入的串从大到小排个序,如果输入的串长度为1或者 除了第一位全部都是 0,那么无解,其余的情况将第一个大于0的数取出来,然后剩下的数组成一个串相加即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define N 10000005
char str[N];
char result[N];
char b[];
int cmp(char a,char b)
{
return a>b;
}
void reverse( char *s ) /*将字符串逆置*/
{
int length;
int i = ;
char temp;
length = strlen( s );
while( i < length - i - )
{
temp = s[i];
s[i] = s[length - i - ];
s[length - i - ] = temp;
i++;
}
}
void AddBigNum( char* s1, char* s2, char* result )
{
int len1 = strlen( s1 );
int len2 = strlen( s2 );
int acc = , temp, i; /*acc为进位标记*/
if( s1 == NULL || s2 == NULL || result == NULL )
{
return;
}
reverse( s1 );
reverse( s2 );
for( i = ; i < len1 && i < len2; i++ )
{
temp = s1[i] - '' + s2[i] - '' + acc; /*计算每位的实际和*/
result[i] = temp % + ''; /*通过求余数来确定每位的最终值*/
if( temp >= ) /*通过这个if..else..条件来判断是否有进位,并设置进位值*/
acc = ;
else
acc = ;
}
if( i < len1 ) /*两个加数位数不同*/
{
for( ; i < len1; i++ )
{
temp = s1[i] - '' + acc; /*依旧要考虑进位,比如9999 + 1的情况*/
result[i] = temp % + '';
if( temp >= )
acc = ;
else
acc = ;
}
}
if( i < len2 )
{
for( ; i < len2; i++ )
{
temp = s2[i] - '' + acc;
result[i] = temp % + '';
if( temp >= )
acc = ;
else
acc = ;
}
}
if( acc == ) /*考虑如:123 + 911 = 1034的情况,如果不增加这个条件会得到结果为034,进位被舍弃*/
result[i++] = '';
result[i] = '\0';
reverse( result );
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%s",str);
int len = strlen(str);
sort(str,str+len,cmp);
if(len==)
{
printf("Uncertain\n");
}
else
{
bool flag = true;
int ans = ;
for(int i=len-; i>=; i--)
{
if(str[i]!='')
{
ans = i;
break;
}
}
if(ans==)
{
printf("Uncertain\n");
continue;
}
b[] = str[ans];
int id = ;
for(int i=; i<len; i++)
{
if(i==ans) continue;
str[id++] = str[i];
}
str[id]='\0';
AddBigNum(str,b,result);
printf("%s\n",result);
}
}
return ;
}

Arrange

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 74    Accepted Submission(s): 30

Problem Description
Accidentally, Cupid, god of desire has hurt himself with his own dart and fallen in love with Psyche.

This has drawn the fury of his mother, Venus. The goddess then throws before Psyche a great mass of mixed crops.

There are n heaps of crops in total, numbered from 1 to n.

Psyche needs to arrange them in a certain order, assume crops on the i-th position is Ai.

She is given some information about the final order of the crops:

1. the minimum value of A1,A2,...,Ai is Bi.

2. the maximum value of A1,A2,...,Ai is Ci.

She wants to know the number of valid permutations. As this number can be large, output it modulo 998244353.

Note that if there is no valid permutation, the answer is 0.

 
Input
The first line of input contains an integer T (1≤T≤15), which denotes the number of testcases.

For each test case, the first line of input contains single integer n (1≤n≤105).

The second line contains n integers, the i-th integer denotes Bi (1≤Bi≤n).

The third line contains n integers, the i-th integer denotes Ci (1≤Ci≤n).

 
Output
For each testcase, print the number of valid permutations modulo 998244353.
 
Sample Input
2
3
2 1 1
2 2 3
5
5 4 3 2 1
1 2 3 4 5
 
Sample Output
1
0

Hint

In the first example, there is only one valid permutation (2,1,3) .

In the second example, it is obvious that there is no valid permutation.

 
Source
 
题意:在由 1 - n 中的数字组成的n个谷堆,假设前 i 个谷堆的最大值是C[i],最小值是B[i],现在知道这n堆谷堆前所有前缀的最大值和最小值,问这些谷堆总共有多少种组成方式??
题解:递推,排除掉5种不可能的情况,1.b[i]>b[i-1] 2,c[i]<c[i-1] 3,b[i]>c[i] 4.c[1]!=b[1] 5.b[i],c[i] < 1 || > n ,然后递推,如果当前产生的新的 b[i]或者 c[i] 那么dp[i] = dp[i-1] ,如果当前 b[i-1] = b[i] && c[i-1] = c[i] ,那么我们可以在 [b[i],c[i]]中任选一个数,但是由于谷堆是互不相同的,所以每次我们的选项都会变少,弄个计数器计算一下当前已经选了多少种,减掉之后答案即为 dp[i] = dp[i-1]*(c[i]-b[i]+1-num)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const long long mod = ;
const int N = ;
int b[N],c[N];
long long dp[N];
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
int n;
scanf("%d",&n);
int MIN = ;
int MAX = -;
bool flag = true;
for(int i=;i<=n;i++){
scanf("%d",&b[i]);
if(b[i]<||b[i]>n) flag = false;
if(b[i]>MIN) flag = false;
MIN = min(MIN,b[i]);
}
for(int i=;i<=n;i++){
scanf("%d",&c[i]);
if(c[i]<MAX) flag = false;
if(c[i]<||c[i]>n) flag = false;
MAX = max(MAX,c[i]);
if(c[i]<b[i]) flag = false;
}
if(!flag||c[]!=b[]) printf("0\n");
else{
memset(dp,,sizeof(dp));
dp[] = ;
int num = ;
for(int i=;i<=n;i++){
if(c[i]==c[i-]&&b[i-]==b[i]) {
dp[i] = dp[i-]*(c[i]-b[i]-num+)%mod;
}
else if(b[i]<b[i-]&&c[i-]==c[i]||b[i]==b[i-]&&c[i-]<c[i]){
dp[i] = dp[i-];
}
num++;
}
printf("%I64d\n",dp[n]);
}
}
return ;
}

BestCoder 2nd Anniversary的前两题的更多相关文章

  1. BestCoder 2nd Anniversary

    A题 Oracle http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=703&pid=1001 大数相加: ...

  2. Educational Codeforces Round 58 (Rated for Div. 2) (前两题题解)

    感慨 这次比较昏迷最近算法有点飘,都在玩pygame...做出第一题让人hack了,第二题还昏迷想错了 A Minimum Integer(数学) 水题,上来就能做出来但是让人hack成了tle,所以 ...

  3. 牛客 2020.10.20 TG 前两题

    T1 GCD 数学水题... 对于每个数,如果这个数有两个及以上的质因数的话,它所有除 \(1\) 之外的因数求 \(GCD\) 的值一定为 \(1\).那么判断是否是质数或质数的次方即可(质数除 \ ...

  4. hdu 5720 BestCoder 2nd Anniversary Wool 推理+一维区间的并

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5720 题意:有n(n <= 105)个数 ,每个数小于等于 1018:问在给定的[L,R]区间中 ...

  5. BestCoder 2nd Anniversary 1001 Oracle

    找到最小的非零数字拆开来相加. 高精度. #include <iostream> #include <cstdio> #include <cstring> #inc ...

  6. hihocoder 前两题思路

    1800 : 玩具设计师 二维前缀和的写法有很多,最常见的是s[x-1][y]+s[x][y-1]-s[x-1][y-1]+a[x][y]; 涉及二维矩阵求和,联想前缀和,求>=指定面积的最大耐 ...

  7. BestCoder 2nd Anniversary/HDU 5719 姿势

    Arrange Accepts: 221 Submissions: 1401 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/2 ...

  8. BestCoder 2nd Anniversary/HDU 5718 高精度 模拟

    Oracle Accepts: 599 Submissions: 2576 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/26 ...

  9. hdu 5719 BestCoder 2nd Anniversary B Arrange 简单计数问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5719 题意:一个数列为1~N的排列,给定mn[1...n]和mx[1...n],问有符合的排列数为多少 ...

随机推荐

  1. java面试二

    技术交流群: 233513714 126.什么是ORM?答:对象关系映射(Object-Relational Mapping,简称ORM)是一种为了解决程序的面向对象模型与数据库的关系模型互不匹配问题 ...

  2. linux中jdk的安装与mysql 的安装

    1.linux安装jdk #先找到 安装包#cd /usr/java tar -zxvf jdk-8u31-linux-x64.tar.gz 2.安装选择要安装java的位置,如/usr/目录下,新建 ...

  3. Python数据类型一

    一.整型 在Python内部对整数的处理分为普通整数和长整数,普通整数长度为机器位长,通常都是32位,超过这个范围的整数就自动当长整数处理,而长整数的范围几乎完全没限制Python可以处理任意大小的整 ...

  4. js点击重置按钮重置表单

    <html><head><script type="text/javascript">function formReset(){document ...

  5. github+git提交 基础用法

    git版本管理基本用法: 安装就不用说了 随便一搜 安装完 妥妥的.下边说的是在github从新建一个项目开始: 1.首先打开自己的github地址,如下图所示 点加号 选 New repositor ...

  6. Python全栈 MySQL 数据库 (简述 、安装、基本命令)

    ParisGabriel              每天坚持手写  一天一篇  决定坚持几年 为了梦想为了信仰    开局一张图     一个月的python已经结束了  下面就是数据库了   先说M ...

  7. 聊聊、AES 和 DES

    AES 和 DES 都是对称加密的一种,但是 DES 的 Key 是 56 位,而 AES 的 Key 有 128,256,512 可选. AES 加密AES String randomKey = & ...

  8. 系统编程--标准IO

    1.流和FILE对象 对于国际字符集,一个字符可以由一个以上的字节来表示.标准I/O文件流可以用来操作单字节和多字节(宽,wide)字符集.一个流的方向(orientation)决定了字符是以单字节还 ...

  9. asp.net连接SQL server,SQLLite,Oracle,Access数据库

    asp.net中连接数据库有两种方式为appSettings和connectionStrings connectionStrings比较常用,所以只讲一下connectionStrings方式的连接 ...

  10. 论文笔记《Tracking Using Dynamic Programming for Appearance-Based Sign Language Recognition》

    一.概述 这是我在做手势识别的时候,在解决手势画面提取的时候看的一篇paper,这里关键是使用了动态规划来作为跟踪算法,效果是可以比拟cameshift和kf的,但在occlusion,gaps或者离 ...