// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle #include <Eigen/Dense> Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s; // Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) // A.resize(4, 4); // Runtime error if assertions are on.
B.resize(4, 9); // Runtime error if assertions are on.
A.resize(3, 3); // Ok; size didn't change.
B.resize(3, 9); // Ok; only dynamic cols changed. A << 1, 2, 3, // Initialize A. The elements can also be
4, 5, 6, // matrices, which are stacked along cols
7, 8, 9; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(10); // Fill A with all 10's. // Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)' // Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(:, i+1:i+rows)
P.middleRows(i, rows) // P(:, i+1:i+rows)
P.bottomRows<rows>() // P(:, end-rows+1:end)
P.bottomRows(rows) // P(:, end-rows+1:end)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) // Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) // Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R) // All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s; // Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q) // Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2) // Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> //// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done // Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) // Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV() // Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

C++ Eigen库和Matlab对比的更多相关文章

  1. Eigen库矩阵运算使用方法

    Eigen库矩阵运算使用方法 Eigen这个类库,存的东西好多的,来看一下主要的几个头文件吧: ——Core 有关矩阵和数组的类,有基本的线性代数(包含 三角形 和 自伴乘积 相关),还有相应对数组的 ...

  2. 算法库:Matlab与C++混合编程

    算法库:Matlab与C++混合编程 最近做光流算法预演过程中,下载的源码中涉及到了Matlab和C++的混合编程.在同事Matlab2014的环境下,程序到是一下就运行通过了.但在我这Matlab2 ...

  3. 关于Eigen库在Visual Studio2013中传参对齐报错问题

    Error as follow: 具体问题及解决办法描述如下: (引自http://www.fx114.net/qa-278-97757.aspx) /************************ ...

  4. NDK 开发实例二(添加 Eigen库)

    上一篇,我已经阐述了如何创建一个简单的NDK实例: NDK 开发实例一(Android.mk环境配置下) 在上一篇的基础上,我们来添加Eigen库,然后做一个简单实例. Eigen是一个高层次的C + ...

  5. Eigen库和STL容器冲突问题

    博客参考:https://blog.csdn.net/huajun998/article/details/54311561 在程序中想使用类似于如下的容器 std::vector<Eigne:: ...

  6. SVD分解的c++代码(Eigen 库)

    使用Eigen 库:进行svd分解,形如 A = U * S * VT. JacobiSVD<MatrixXd> svd(J, ComputeThinU | ComputeThinV); ...

  7. C++ 矩阵计算库 :Eigen库

    Eigen http://eigen.tuxfamily.org/index.php?title=Main_Page 下载http://bitbucket.org/eigen/eigen/get/3. ...

  8. Eigen库笔记整理(一)

    首先熟悉Eigen库的用途,自行百度. 引入头文件: // Eigen 部分 #include <Eigen/Core> // 稠密矩阵的代数运算(逆,特征值等) #include < ...

  9. Eigen库对齐问题:declspec(align('16')) 的形参将不被对齐

    一:错误提示:error C2719: '_Val': formal parameter with __declspec(align('16')) won't be aligned 英文提示:erro ...

随机推荐

  1. CMOS和BIOS

      CMOS是一类特殊的RAM(断电时将丢失其存储内容) BIOS是软件,是程序! CMOS是芯片,是硬件! 实际上我们是通过BIOS这个程序,去设置COMS的参数的.. COMS是一块芯片,继承在主 ...

  2. Linux数组基础

    执行结果:

  3. 【ACM】阶乘因式分解(二)

    阶乘因式分解(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 给定两个数n,m,其中m是一个素数. 将n(0<=n<=2^31)的阶乘分解质因数,求 ...

  4. java——数据结构

    底层数据结构: 数组 ArrayList 链表 LinkedList 应用数据结构: 二分搜索树 BST 最大堆/最小堆 MaxHeap/MinHeap 线段树 SegmentTree 字典树 Tri ...

  5. vue-基于elementui自定义主题更换皮肤及自定义内容的皮肤跟换

    参考这篇博客https://blog.csdn.net/young_Emily/article/details/78591261做一遍,加上自己的一些理解 思路:通过自己上一篇博客https://ww ...

  6. Linux进程间通信的几种方式

    1.管道及有名管道(pipe & named pipe) pipe 用于亲缘关系的进程间通信,named pipe除了pipe的功能外,还可以进行无亲缘关系进程间的通信. 2.信号(Signa ...

  7. 关于let 和 var 的作用域问题

    直接来一个经典案例: // 1. 下面的结果是什么? 为什么? for (var i=0;i<5;i++){ setTimeout(function () { console.log(i) }, ...

  8. c++中赋值运算符重载为什么要用引用做返回值?

    class string{ public: string(const char *str=NULL); string(const string& str);     //copy构造函数的参数 ...

  9. chrome 修改请求头的小工具

    chrome 网上应用店中搜索  ModHeader

  10. java.lang.IllegalArgumentException: Page directive: invalid value for import 问题处理

    1.问题说明: 项目原来用的tomcat版本是apache-tomcat-6.0,后来为了安全原因将版本升至apache-tomcat-7.0,发现有的jsp页面出现下面的异常: java.lang. ...