bzoj1185【HNOI2007】最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖
Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge id=1185" style="color:blue; text-decoration:none">Discuss
Submit: 1114 Solved: 505
[Submit][Status][
Description


凸包+旋转卡壳
首先有一个结论:矩形一定有一条边在凸包上,否则我们旋转之后一定会得到一个更小的矩形,脑补一下。
然后枚举凸包上的边,用旋转卡壳维护矩形的另外三条边,同一时候更新答案就可以。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<set>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 50005
#define eps 1e-8
#define inf 1e60
using namespace std;
int n,top;
double mn=inf;
struct data
{
double x,y;
friend bool operator ==(data a,data b){return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;}
friend bool operator !=(data a,data b){return !(a==b);}
friend bool operator <(data a,data b){return fabs(a.y-b.y)<eps? a.x<b.x:a.y<b.y;}
friend bool operator >(data a,data b){return !(a==b)&&!(a<b);}
friend data operator +(data a,data b){return (data){a.x+b.x,a.y+b.y};}
friend data operator -(data a,data b){return (data){a.x-b.x,a.y-b.y};}
friend double operator *(data a,data b){return a.x*b.y-a.y*b.x;}//叉积
friend double operator /(data a,data b){return a.x*b.x+a.y*b.y;}//点积
friend data operator *(data a,double b){return (data){a.x*b,a.y*b};}
}p[maxn],s[maxn],ans[4];
inline double dis(data a,data b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
inline bool cmp(data a,data b)
{
double t=(a-p[1])*(b-p[1]);
if (fabs(t)<eps) return (dis(a,p[1])<dis(b,p[1]));
else return t>0;
}
inline void solve()
{
F(i,2,n) if (p[i]<p[1]) swap(p[1],p[i]);
sort(p+2,p+n+1,cmp);
s[++top]=p[1];
F(i,2,n)
{
while (top>1&&(p[i]-s[top-1])*(s[top]-s[top-1])>-eps) top--;
s[++top]=p[i];
}
}
inline void getans()
{
int l=1,r=1,p=1;
double L,R,D,H;
s[0]=s[top];
F(i,0,top-1)
{
D=dis(s[i],s[i+1]);
while ((s[i+1]-s[i])*(s[p+1]-s[i])-(s[i+1]-s[i])*(s[p]-s[i])>-eps) p=(p+1)%top;
while ((s[i+1]-s[i])/(s[r+1]-s[i])-(s[i+1]-s[i])/(s[r]-s[i])>-eps) r=(r+1)%top;
if (i==0) l=r;
while ((s[i+1]-s[i])/(s[l+1]-s[i])-(s[i+1]-s[i])/(s[l]-s[i])<eps) l=(l+1)%top;
L=((s[i+1]-s[i])/(s[l]-s[i]))/D;
R=((s[i+1]-s[i])/(s[r]-s[i]))/D;
H=abs((s[i+1]-s[i])*(s[p]-s[i]))/D;
if ((R-L)*H<mn)
{
mn=(R-L)*H;
ans[0]=s[i]+(s[i+1]-s[i])*(R/D);
ans[1]=ans[0]+(s[r]-ans[0])*(H/dis(s[r],ans[0]));
ans[2]=ans[1]+(s[i]-ans[0])*((R-L)/dis(s[i],ans[0]));
ans[3]=ans[2]+(ans[0]-ans[1]);
}
}
}
int main()
{
scanf("%d",&n);
F(i,1,n) scanf("%lf%lf",&p[i].x,&p[i].y);
solve();
getans();
printf("%.5lf\n",mn);
int fir=0;
F(i,1,3) if (ans[i]<ans[fir]) fir=i;
F(i,0,3) printf("%.5lf %.5lf\n",ans[(i+fir)%4].x,ans[(i+fir)%4].y);
return 0;
}
bzoj1185【HNOI2007】最小矩形覆盖的更多相关文章
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...
- 2018.10.18 bzoj1185: [HNOI2007]最小矩形覆盖(旋转卡壳)
传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- BZOJ1185 : [HNOI2007]最小矩形覆盖
求出凸包后,矩形的一条边一定与凸包的某条边重合. 枚举每条边,求出离它最远的点和离它最左最右的点,因为那三个点是单调变化的,所以复杂度为$O(n)$. 注意精度. #include<cstdio ...
- BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...
- bzoj千题计划209:bzoj1185: [HNOI2007]最小矩形覆盖
http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解去看它 http://www.cnblogs.com/TheRoadToTheGold/p ...
- 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
随机推荐
- java 中的VO,PO,DTO,DO对象
经常会接触到VO,DO,DTO的概念,本文从领域建模中的实体划分和项目中的实际应用情况两个角度,对这几个概念进行简析. 得出的主要结论是:在项目应用中,VO对应于页面上需要显示的数据(表单),DO对应 ...
- 使用ajax,结合jquery,php实现图片上传预览功能
大致逻辑:点击页面的file,上传图片到指定的php处理图片的文件,处理完成以后,将图片的连接地址返回,JS控制返回的数据,然后将图片动态的展示出来html代码<label> <im ...
- win10 下常用shell命令
shell脚本命令 单行过长如何换行 在一行的结尾加上^即可 , 打印当前目录 %cd%
- 常用函数 __MySQL必知必会
----------------------使用数据处理函数 ---------------------- 常见的文本处理函数 Left() 返回串左边的字符Length() 返回串的长度Locate ...
- Qt自己定义事件实现及子线程向主线程传送事件消息
近期在又一次学习Qt的时候,由于要涉及到子线程与主线程传递消息,所以便琢磨了一下.顺便把有用的记录下来,方便自己以后查询及各位同仁的參考! 特此声明,本篇博文主要讲述有用的,也就是直接说明怎么实现,就 ...
- NFS 服务配置篇
安装.配置NFS服务 1.NFS简介 NFS(network file system) NFS是一个主机A通过网络,允许其他主机B可以来共享主机A的一个目录文件的一个文件系统 2.需要安装两个包nfs ...
- python之生成excel
#_*_coding:utf-8_*_ import MySQLdb import xlwt from datetime import datetime def get_data(sql): # 创建 ...
- 发布android apk,Error running app: No target device found.
https://developer.android.com/studio/run/device.html\ 一台android设备不识别,android文档还挺全 需要安装usb驱动链接里有
- Commenting and uncommenting XML via Python
转载: http://stackoverflow.com/questions/8764017/commenting-and-uncommenting-xml-via-python from xml.d ...
- Java.lang.NoClassDefFoundError--找不到相应的类
如题Java.lang.NoClassDefFoundError 错误可能是由于找不到指定的类引起的. 一般出现在java 反射调用,或者通过jniRegisterNativeMethods手动注册j ...