P2296 寻找道路

题目描述

在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

2 .在满足条件1 的情况下使路径最短。

注意:图G 中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入输出格式

输入格式:

输入文件名为road .in。

第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。

接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。

最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。

输出格式:

输出文件名为road .out 。

输出只有一行,包含一个整数,表示满足题目᧿述的最短路径的长度。如果这样的路径不存在,输出- 1 。

输入输出样例

输入样例#1:

3 2
1 2
2 1
1 3
输出样例#1:

-1
输入样例#2:

6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5
输出样例#2:

3

说明

解释1:

如上图所示,箭头表示有向道路,圆点表示城市。起点1 与终点3 不连通,所以满足题

目᧿述的路径不存在,故输出- 1 。

解释2:

如上图所示,满足条件的路径为1 - >3- >4- >5。注意点2 不能在答案路径中,因为点2连了一条边到点6 ,而点6 不与终点5 连通。

对于30%的数据,0<n≤10,0<m≤20;

对于60%的数据,0<n≤100,0<m≤2000;

对于100%的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。

AC代码:

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
#define N 200010
#define QLEN 100001
pair<int,int>ed[N];
struct node{
int v,next;
}e[N<<];
int n,m,cnt,S,T,q[N>>],head[N>>],dis[N>>];
bool vis[N];
bool pd(int pos){
for(int i=head[pos];i;i=e[i].next) if(!vis[e[i].v]) return ;//未与终点联通
return ;
}
bool spfa(){//反向走一遍,判断是否有路
q[]=T;
vis[T]=;
int h=,t=;
while(h<t){
if(++h>QLEN) h=;
int p=q[h];//不用vis[p]=0;
for(int i=head[p];i;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(++t>QLEN) t=;
q[t]=v;
}
}
}
return !vis[S];
}
bool SPFA(){//正向更新最短路(dis[]不用初始化极大值)
q[]=S;
dis[S]=;
int h=,t=;
while(h<t){
if(++h>QLEN) h=;
int p=q[h];//不用vis[p]=0;
if(!pd(p)) continue;
for(int i=head[p];i;i=e[i].next){
int v=e[i].v;
if(!dis[v]){
dis[v]=dis[p]+;
if(++t>QLEN) t=;
q[t]=v;
if(v==T){printf("%d\n",dis[T]);return ;}//有解 输出
}
}
}
return ;
}
void add(int x,int y){
e[++cnt].v=y;
e[cnt].next=head[x];
head[x]=cnt;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d%d",&ed[i].first,&ed[i].second),add(ed[i].second,ed[i].first);//第一遍反向制表
scanf("%d%d",&S,&T);
if(spfa()){puts("-1");return ;}
memset(head,,sizeof head);//再次初始化
for(int i=;i<=m;i++) add(ed[i].first,ed[i].second);
if(SPFA()){puts("-1");return ;}
return ;
}

洛谷P2296 寻找道路==codevs3731 寻找道路的更多相关文章

  1. 【题解】洛谷P2296 [NOIP2014TG] 寻找道路(SPFA+DFS)

    题目来源:洛谷P2296 思路 一开始看还以为是一道水题 虽然本来就挺水的 本道题的难点在于如何判断是否路径上的点都会直接或者间接连着终点 我们需要在一开始多建一个反向图 然后从终点DFS回去 把路径 ...

  2. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  3. 洛谷——P2296 寻找道路

    P2296 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  4. 洛谷P2296 寻找道路 [拓扑排序,最短路]

    题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  5. 【洛谷P2296】[NOIP2014]寻找道路

    寻找道路 题目链接 这道题非常的水,按照题意, 先反向建边,从终点搜索,标记出可以到达终点的点 然后枚举一遍,判断出符合条件1的点 再从起点搜索一遍就可以了 #include<iostream& ...

  6. AC日记——寻找道路 洛谷 P2296

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  7. [NOIP2014] 提高组 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  8. NOIP2014 day2 T2 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  9. [洛谷P2296] NOIP2014 寻找道路

    问题描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

随机推荐

  1. jmeter的dubbo插件

    调研是否可以把dubbo压测的一些公共配置变成变量.可以调控 Dubbo接口如何在Jmeter中测试,自研Dubbo Plugin for Apache JMeter 最新使用手册参考:https:/ ...

  2. apache的proxy代理总访问后端web的第一个虚拟主机

    先查看cat /usr/local/apache2/modules 时候有mod_proxy.so  mod_proxy_http.so mod_proxy_connect 如果没有,使用apache ...

  3. 【Hadoop】Hadoop HA机制要点

    Hadoop HA 机制架构.要点.原理: 需要的机器(规划): 至少三台机器 HOSTNAME IP 安装软件ZK HADOOP进程 HADOOP-NODE1 10.20.0.11 JDK,HADO ...

  4. [转载]How to Install Google Chrome 39 in CentOS/RHEL 6 and Fedora 19/18

    FROM: http://tecadmin.net/install-google-chrome-in-centos-rhel-and-fedora/ Google Chrome is a freewa ...

  5. ElasticSearch获取指定Field数据的Java方法

    ElasticSearch(ES)检索后需要结果时,可能通过source接口读出.但是这样的话,返回的结果会很多.在调用search方法时,我们可以添加addfield或addfields方法,仅仅读 ...

  6. 配置Linux系统实现dhcp功能

    配置Linux系统实现dhcp功能 1.背景及原理    DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)通常被应用在大型的局域网络环境中,主要作用 ...

  7. nodeJs-autoBulid

    /** * Created by Administrator on 2016/1/16. */ var projectData = { 'name' : 'autobulid', 'fileData' ...

  8. defer,panic,recover

    Go语言不支持传统的 try…catch…finally 这种异常,因为Go语言的设计者们认为,将异常与控制结构混在一起会很容易使得代码变得混乱.因为开发者很容易滥用异常,甚至一个小小的错误都抛出一个 ...

  9. List装form

    List<MemberPrivilegeForm> formlist = new ArrayList<MemberPrivilegeForm>(); int status = ...

  10. 【引用】python 静态函数 类函数 实例函数

    1.关于定义类的一些奇特之处  今天在Python中定义一个类,很奇怪,不需要事先声明它的成员变量吗?暂时不知,先记录下来: class Account(object):    "一个简单的 ...