就是求$D = A \times B \times A^T - C \times A^T$

展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} C_i * A_i$$

其中$Ai = 0 \ or \ 1$

转化成最小割模型,就是一堆东西,选了$i$号物品要支付费用$C_i$,同时选$i$和$j$两个物品可以获得$B_{i, j}$的收益

于是非常简单啦,建图什么的直接看程序好了!

 /**************************************************************
Problem: 3996
User: rausen
Language: C++
Result: Accepted
Time:476 ms
Memory:51612 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int N = * ;
const int M = N << ;
const int inf = 1e9; struct edge {
int next, to, f;
edge() {}
edge(int _n, int _t, int _f) : next(_n), to(_t), f(_f) {}
} e[M]; int n, ans, S, T;
int first[N], tot = ;
int d[N], q[N]; inline int read(); inline void Add_Edges(int x, int y, int f) {
e[++tot] = edge(first[x], y, f), first[x] = tot;
e[++tot] = edge(first[y], x, ), first[y] = tot;
} #define y e[x].to
#define p q[l]
bool bfs() {
int l, r, x;
memset(d, -, sizeof(d));
d[q[] = S] = ;
for (l = r = ; l != r + ; ++l)
for (x = first[p]; x; x = e[x].next)
if (!~d[y] && e[x].f) {
d[q[++r] = y] = d[p] + ;
if (y == T) return ;
}
return ;
}
#undef p int dfs(int p, int lim) {
if (p == T || !lim) return lim;
int x, tmp, rest = lim;
for (x = first[p]; x && rest; x = e[x].next)
if (d[y] == d[p] + && ((tmp = min(e[x].f, rest)) > )) {
rest -= (tmp = dfs(y, tmp));
e[x].f -= tmp, e[x ^ ].f += tmp;
if (!rest) return lim;
}
if (rest) d[p] = -;
return lim - rest;
}
#undef y int Dinic() {
int res = ;
while (bfs())
res += dfs(S, inf);
return res;
} int main() {
int i, j, x, now;
n = now = read(), S = n * n + n + , T = S + ;
for (i = ; i <= n; ++i)
for (j = ; j <= n; ++j) {
x = read(), ++now;
Add_Edges(i, now, inf), Add_Edges(j, now, inf);
Add_Edges(now, T, x);
ans += x;
}
for (i = ; i <= n; ++i) Add_Edges(S, i, read());
printf("%d\n", ans - Dinic());
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}

BZOJ3996 [TJOI2015]线性代数的更多相关文章

  1. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  2. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  3. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  4. BZOJ3996 [TJOI2015]线性代数 【最小割】

    题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...

  5. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  6. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  7. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  8. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  9. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

随机推荐

  1. MVC3远程验证

    public class StudentModel { [Display(Name="学生编号")] public int StuId { set; get; } [Require ...

  2. More Effective C++ (1)

    简单分析总结了more effective c++ 的前十个条款: 剩下的条款to be continue~ 1.仔细区分指针和引用引用必须不能指向空,指针可以指向空,指针初始化是记得赋空值,重载某些 ...

  3. [转载] 深入理解 docker ulimit

    深入理解docker ulimit 2015年7月23日 10:00 阅读 12778 [编者的话]Docker大规模应用后,如果你没踩过坑,说出去肯定没人信.昨天就遇到一个ulimit的经典问题:业 ...

  4. jj前端项目1th总结

    1:设计图--->分出几个独立模块--->颗粒化布局--->文档流控制整体布局--->固定位置的元素绝对定位,段落这种元素不可绝对定位.----->加上和后台交互用的js ...

  5. web设计经验<三>值得你深入了解的交互设计5大支柱

    随着单页式设计和移动端的兴起,网页中的交互设计越来越重要了.为了打造流畅而可靠的用户体验,你需要对交互设计有更加深入的了解. 正如同我们在<交互设计最佳实践(卷1)>中所述,要做好交互设计 ...

  6. JMeter入门合集

    JMeter从入门到精通 http://blog.csdn.net/lihengxin/article/details/4325918 jmeter入门教程- Jmeter教程及技巧汇总 http:/ ...

  7. Oracle 11g安装步骤详谈

    又是十月南京阴雨天气 图书馆花了一个多小左右把11g安装折腾好了.其中折腾SQL Developer 花了好长时间,总算搞定了.好了,先总结下安装步骤,希望给后面的童鞋提高安装效率. 相互方便  共同 ...

  8. (三)VLAN基本概念

  9. (八)C语言结构体和指针

    指针也可以指向一个结构体变量.定义的一般形式为: struct 结构体名 *变量名; 前面已经定义了一个结构体 stu: struct stu { char *name; int num; char ...

  10. 数据库事物四大特性-ACID

    事务的:原子性.一致性.分离性.持久性 事物(transaction)是由一些列操作序列构成的执行单元,这些单元要么都做,要么不做,是一个不可分割的工作单元. 数据库事物的四个基本性质(ACID) 1 ...