傻叉单调栈

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
char sh[15];
void print(int x){
int cnt=0;
while(x) sh[++cnt]=x%10,x/=10;
dwn(i,cnt,1) putchar(sh[i]+48);
putchar(32);
}
const int nmax=2e5+5;
const int inf=0x7f7f7f7f;
int a[nmax],ans[nmax],l[nmax],r[nmax],q[nmax];
void maxs(int &a,int b){
if(a<b) a=b;
}
int main(){
int n=read();rep(i,1,n) a[i]=read();
l[1]=1;int cur=1;q[1]=1;
rep(i,2,n){
while(a[q[cur]]>=a[i]&&cur) --cur;
l[i]=q[cur]+1;q[++cur]=i;
}
r[n]=n;cur=1;q[1]=n;q[0]=n+1;
dwn(i,n-1,1){
while(a[q[cur]]>=a[i]&&cur) --cur;
r[i]=q[cur]-1;q[++cur]=i;
}
rep(i,1,n) maxs(ans[r[i]-l[i]+1],a[i]);
int tmp=0;
dwn(i,n,1) maxs(ans[i],tmp),maxs(tmp,ans[i]);
rep(i,1,n) print(ans[i]);printf("\n");
return 0;
}

  

题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注

有n只熊。他们站成一排队伍,从左到右依次1到n编号。第i只熊的高度是ai。

一组熊指的队伍中连续的一个子段。组的大小就是熊的数目。而组的力量就是这一组熊中最小的高度。

迈克想知道对于所有的组大小为x(1 ≤ x ≤ n)的,最大力量是多少。

Input
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 2×10^5),表示熊的数目。
第二行包含n个整数以空格分开,a1, a2, ..., an (1 ≤ ai ≤ 10^9),表示熊的高度。
Output
在一行中输出n个整数,对于x从1到n,输出组大小为x的最大力量。
Input示例
10
1 2 3 4 5 4 3 2 1 6
Output示例
6 4 4 3 3 2 2 1 1 1

51nod1437 迈克步的更多相关文章

  1. 51nod1437 迈克步 单调栈

    考虑一个点作为最小值的区间$[L[i], R[i]]$ 那么这个区间的所有含$i$的子区间最小值都是$v[i]$ 因此,用单调栈求出$L[i], R[i]$后,对$R[i] - L[i] + 1$这个 ...

  2. 51nod 1437:迈克步 单调栈基础题

    1437 迈克步 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  取消关注 有n只熊.他们站成一排队伍,从左到右依次1到 ...

  3. 51nod 1437 迈克步 单调栈

    利用单调栈高效的求出,一个数a[i]在哪个区间内可作为最小值存在. 正向扫描,求出a[i]可做为最小值的区间的左边界 反向扫描,求出a[i]可作为最小值的区间的右边界 r[i] - l[i] +1 就 ...

  4. 51nod 1437 迈克步(单调栈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 题意: 思路: 单调栈题.求出以每个数为区间最大值的区间范围即可. ...

  5. 51nod 1437 迈克步

    题目链接 先利用单调栈or其他方法找到一个元素g[i]作为最小值的区间,设为[L, R]. 那么长度为R-L+1的组的最大值ans=max(ans,g[i]).但是有一个问题: 比如6这个元素是长度为 ...

  6. 51nod 1437 迈克步——单调栈

    有n只熊.他们站成一排队伍,从左到右依次1到n编号.第i只熊的高度是ai. 一组熊指的队伍中连续的一个子段.组的大小就是熊的数目.而组的力量就是这一组熊中最小的高度. 迈克想知道对于所有的组大小为x( ...

  7. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  8. 51nod 1437

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 1437 迈克步 题目来源: CodeForces 基准时间限制: ...

随机推荐

  1. CSS 外边距(margin)重叠及防止方法

    边界重叠是指两个或多个盒子(可能相邻也可能嵌套)的相邻边界(其间没有任何非空内容.补白.边框)重合在一起而形成一个单一边界. 两个或多个块级盒子的垂直相邻边界会重合.结果的边界宽度是相邻边界宽度中最大 ...

  2. Sqli-labs less 51

    Less-51 本关的sql语句为    $sql="SELECT * FROM users ORDER BY '$id'"; 我们此处要进行stacked injection,要 ...

  3. hdu 1250 Hat's Fibonacci(java,简单,大数)

    题目 java做大数的题,真的是神器,来一道,秒一道~~~ import java.io.*; import java.util.*; import java.math.*; public class ...

  4. DevExpress GridControl 复合表头/表头分层设计.

    首先创建一个窗体,将GridControl控件拖到窗体中. 然后 Click here to change view  -> Convert to ->  BandedGridView   ...

  5. JUC回顾之-ThreadPoolExecutor的原理和使用

    Spring中的ThreadPoolTaskExecutor是借助于JDK并发包中的java.util.concurrent.ThreadPoolExecutor来实现的.基于ThreadPoolEx ...

  6. IEEE 802.3 Ethernet

    Introduction Ethernet 是过去30年以来最为成功的局域网(local area networking)技术. 1. First widely used LAN technology ...

  7. Haproxy均衡负载部署和配置文件详解

    HAproxy均衡负载部署和配置文件详解 HAProxy提供高可用性.负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费.快速并且可靠的一种解决方案.根据官方数据,其最高极限支持10G ...

  8. QT 多线程程序设计

    参考:http://www.cnblogs.com/hicjiajia/archive/2011/02/03/1948943.html http://mobile.51cto.com/symbian- ...

  9. BigDecimal进行除法divide运算注意事项

     Java编程中  BigDecimal进行除法divide运算时,如果结果不整除,出现无限循环小数.则会抛出以下异常: java.lang.ArithmeticException: Non-term ...

  10. DP-母函数

    DP---母函数 先由钱币兑换问题开始 http://acm.hdu.edu.cn/showproblem.php?pid=1284 Problem Description 在一个国家仅有1分,2分, ...