信息论(Information Theory)是概率论与数理统计的一个分枝。用于信息处理、信息熵、通信系统、数据传输、率失真理论、密码学、信噪比、数据压缩和相关课题。本文主要罗列一些基于熵的概念及其意义,注意本文罗列的所有 $\log$ 都是以 2 为底的。

信息熵

在物理界中熵是描述事物无序性的参数,熵越大则越混乱。类似的在信息论中熵表示随机变量的不确定程度,给定随机变量 X ,其取值 $x_1, x_2, \cdots ,x_m$ ,则信息熵为:

\[H(X) =\sum_{i=1}^{m} p(x_i) \cdot \log \frac{1}{p(x_i)} = - \sum_{i=1}^{m} p(x_i) \cdot \log p(x_i)\]

这里有一张图,形象的描述了各种各样的熵的关系:

条件熵

设 X ,Y 为两个随机变量,X 的取值为 $x_1,x_2,...,x_m$ ,Y 的取值为 $y_1,y_2,...y_n$ ,则在X 已知的条件下 Y 的条件熵记做 H(Y|X) :

\begin{aligned}
H(Y|X)
&= \sum_{i=1}^mp(x_i)H(Y|X=x_i) \\
&= -\sum_{i=1}^mp(x_i)\sum_{j = 1}^np(y_j|x_i)\log p(y_j|x_i) \\
&= -\sum_{i=1}^m \sum_{j=1}^np(y_j,x_i)\log p(y_j|x_i) \\
&= -\sum_{x_i,y_j} p(x_i,y_j)\log p(y_j|x_i)
\end{aligned}

联合熵

设 X Y 为两个随机变量,X 的取值为 $x_1,x_2,...,x_m$ ,Y 的取值为 $y_1,y_2,...y_n$ ,则其联合熵定义为:

\[H(X,Y) = -\sum_{i=1}^m\sum_{j=1}^n p(x_i,y_j)\log p(x_i,y_j) \]
联合熵与条件熵的关系:

\begin{aligned}
H(Y|X) &= H(X,Y) - H(X)      \\
H(X|Y) &= H(X,Y) - H(Y)     
\end{aligned}

联合熵满足几个性质 :

1)$H(Y|X) \ge \max(H(X),H(Y))$ ;

2)$H(X,Y) \le H(X) + H(Y)$ ;

3)$H(X,Y) \ge 0$.

相对熵 KL距离

相对熵,又称为KL距离,是Kullback-Leibler散度(Kullback-Leibler Divergence)的简称。它主要用于衡量相同事件空间里的两个概率分布的差异。其定义如下:

\[D(P||Q) = \sum_{x \in X} P(x) \cdot \log\frac{P(x)}{Q(x)} \]

相对熵(KL-Divergence KL散度): 用来描述两个概率分布 P 和 Q 差异的一种方法。 它并不具有对称性,这就意味着:

\[D(P||Q) \ne  D(Q||P)\]

KL 散度并不满足距离的概念,因为 KL 散度不是对称的,且不满足三角不等式。

对于两个完全相同的分布,他们的相对熵为 0 ,$D(P||Q)$ 与函数 P 和函数 Q 之间的相似度成反比,可以通过最小化相对熵来使函数 Q 逼近函数 P ,也就是使得估计的分布函数接近真实的分布。KL 可以用来做一些距离的度量工作,比如用来度量 topic model 得到的 topic 分布的相似性.

互信息

对于随机变量 $X,Y$ 其互信息可表示为 $MI(X,Y)$:

\[MI(X,Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i,y_j) \cdot log_2 {\frac{p(x_i,y_j)}{p(x_i)p(y_j)}} \]

与联合熵分布的区别:

\[H(X,Y) = H(X) + H(Y|X)  = H(Y) + H(X|Y)\]

\[MI(X,Y) = H(X) -H(Y|X)  = H(Y) - H(X|Y)\]

交叉熵

设随机变量 X 的真实分布为 p,用 q 分布来近似 p ,则随机变量 X 的交叉熵定义为:

\[H(p,q) = E_p[-\log q] = -\sum_{i=1}^m{p(x_i) \log{q(x_i)}} \]

形式上可以理解为使用 $q$ 来代替 $p$ 求信息熵了。交叉熵用作损失函数时,$q$ 即为所求的模型,可以得到其与 相对熵的关系:

\begin{aligned}
H(p,q) &= -\sum_x p(x) \log q(x) \\
       &= -\sum_x p(x) \log \frac{q(x)}{p(x)}p(x)\\
       &= -\sum_x p(x) \log p(x) -\sum_x p(x)  \log  \frac{q(x)}{p(x)}\\
       &= H(p)+ D(p||q)
\end{aligned}

可见分布 p 与 q 的交叉熵等于 p 的熵加上 p 与 q 的KL距离,所以交叉熵越小, $D(P||Q)$ 越小,即 分布 q 与 p 越接近,这也是相对熵的一个意义。

信息增益,是一种衡量样本特征重要性的方法。 特征A对训练数据集D的信息增益g(D,A) ,定义为集合D的经验熵H(D)与特征A在给定条件下D的经验条件熵H(D|A)之差,即

\[g(D,A) = H(D) – H(D|A)\]

可见信息增益与互信息类似,然后是信息增益比:

\[g_R(D,A) = \frac{g(D,A)}{H(D)}\]

关于信息论中的熵的一系列公式暂时写到这里,遇到新的内容随时补充。

 
 

信息熵 Information Theory的更多相关文章

  1. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  2. Tree - Information Theory

    This will be a series of post about Tree model and relevant ensemble method, including but not limit ...

  3. information entropy as a measure of the uncertainty in a message while essentially inventing the field of information theory

    https://en.wikipedia.org/wiki/Claude_Shannon In 1948, the promised memorandum appeared as "A Ma ...

  4. Better intuition for information theory

    Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...

  5. 信息论 | information theory | 信息度量 | information measures | R代码(一)

    这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science in ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  7. 信息熵 Information Entropy

    信息熵用于描述信源的不确定度, 即用数学语言描述概率与信息冗余度的关系. C. E. Shannon 在 1948 年发表的论文A Mathematical Theory of Communicati ...

  8. 决策论 | 信息论 | decision theory | information theory

    参考: 模式识别与机器学习(一):概率论.决策论.信息论 Decision Theory - Principles and Approaches 英文图书 What are the best begi ...

  9. The basic concept of information theory.

    Deep Learning中会接触到的关于Info Theory的一些基本概念.

随机推荐

  1. 真机模拟器.a文件编译报错

  2. POJ 1969

    #include <iostream> #include <cmath> using namespace std; int main() { //freopen("a ...

  3. URAL 1152. False Mirrors (记忆化搜索 状压DP)

    题目链接 题意 : 每一颗子弹破坏了三个邻近的阳台.(第N个阳台是与第1个相邻)射击后后的生存的怪物都对主角造成伤害- 如此,直到所有的怪物被消灭,求怎样射击才能受到最少伤害. 思路 : 状压,数据不 ...

  4. QTP菜单消失的解决办法

    解决办法一:点击QTP上方菜单栏“Tools” menu->options 项,点击"General" tab, 最后点击“Restore Layout”按钮. 解决办法二: ...

  5. angularJS seed 安装

    安装nodejs 安装python 配置python 环境 安装git 配置git 环境 clone angularJS seed 代码. 环境变量如下: C:\Program Files\nodej ...

  6. 基于Mongodb的轻量级领域驱动框架(序)

    混园子也有些年头了,从各个大牛那儿学了很多东西.技术这东西和中国的料理一样,其中技巧和经验,代代相传(这不是舌尖上的中国广告).转身回头一望,几年来自己也积累了一些东西,五花八门涉猎到各种方向,今日开 ...

  7. weblogic 安装与配置

    Weblogic 安装 从官网 下载 需要的weblogic 版本, 解压缩后得到 wls1036_generic.jar [fmw_12.1.3.0.0_wls.jar , fmw_12.2.1.1 ...

  8. MYSQL 当有两条重复数据时 保留一条

    delete from test  where id in (select id from (select  max(id) as id,count(text) as count from test ...

  9. Jenkins的Windows Slave的配置

    原文:http://www.cnblogs.com/itech/archive/2011/11/09/2243025.html 参考: https://wiki.jenkins-ci.org/disp ...

  10. ThreadLocal的几种误区

    最近由于需要用到ThreadLocal,在网上搜索了一些相关资料,发现对ThreadLocal经常会有下面几种误解 一.ThreadLocal是java线程的一个实现       ThreadLoca ...