实现该项目的流程如下

"""
项目:用户对物品类别的喜好细分(菜篮子分析) 主算法:PCA降维算法
KMeans算法 总思路
1、导包
2、获取数据
3、数据处理
5、特征工程(使用PCA降维)
   6、使用KMeans算法进行模型训练
   7、模型评估

"""

First of all!!导包

# 1、导包

import pandas as pd #读取数据用
from sklearn.decomposition import PCA # PCA算法,用于把一些没必要的特征删除
from sklearn.cluster import KMeans # 用来进行无目标值训练,即无监督学习
from sklearn.metrics import silhouette_score # 衡量无监督学习的模型是否优秀

然后就是导入数据啦

# 2、获取数据

order_products = pd.read_csv("order_products__prior.csv")
products = pd.read_csv("products.csv")
orders = pd.read_csv("orders.csv")
aisles = pd.read_csv("aisles.csv")

这里提供数据集的下载(百度网盘)(数据很大,不要用流量!!)

链接:https://pan.baidu.com/s/1k-_rvVhc_tjUB8GLFkYlDw
提取码:pq95

接着就是最爱的数据处理环节了

# 数据处理
# 合并表:.merge(),连接两个DataFrame并返回连接之后的DataFrame,每个参数有不同的结果,详情请自行搜索
# 目的是将user_id与aisles连接在一起 tab1 = pd.merge(aisles,products,on=['aisle_id','aisle_id'])
tab2 = pd.merge(order_products,tab1,on=['product_id','product_id'])
tab3 = pd.merge(orders,tab2,on=['order_id','order_id']) # 找到user_id和aisle之间的关系
# .crosstab()是实现交叉表 data = pd.crosstab(tab3["user_id"],tab3["aisle"])
data = tab[:10000] # 偷懒减数【手动滑稽】

下一步是进行降维了

# PCA降维

# 实例化转换器
transfer = PCA(n_components=0.95) # 调用函数
data_new = transfer.fit_transform(data)

接着就是进行模型训练了

# 预估器流程

estimator = KMeans(n_clusters=3) # n_clusters是用来决定分类的类别数
estimator.fit(data_new)

最后就是模型评估啦

# 模型评估

# 查看轮廓系数
print("轮廓系数为:",silhouette_score(data_new,estimator.predict(data_new)))

以上就是作者对于本项目的一些基本实现啦

(ps:该随笔是作者一边学习一边写的,里面有一些自己的拙见,如果有错误或者哪里可以改正的话,还请大家指出并批评改正!)

采用PCA算法&KMeans算法来实现用户对物品类别的喜好细分(菜篮子分析)(附带数据集下载)的更多相关文章

  1. 12_PCA之探究用户对物品类别的喜好细分降维

    案例: 探究:用户对物品类别的喜好细分降维. 背景:把用户分成几个类别,分类的依据是用户购买了哪些物品. 先看商品products.csv数据,有product_id,product_name,ais ...

  2. 数据聚类算法-K-means算法

    深入浅出K-Means算法 摘要: 在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. K-Mea ...

  3. 数据挖掘算法——K-means算法

    k-means中文称为K均值聚类算法,在1967年就被提出  所谓聚类就是将物理或者抽象对象的集合分组成为由类似的对象组成的多个簇的过程 聚类生成的组成为簇 簇内部任意两个对象之间具有较高的相似度,不 ...

  4. 数据挖掘经典算法——K-means算法

    算法描述 K-means算法是一种被广泛使用的基于划分的聚类算法,目的是将n个对象会分成k个簇.算法的具体描述如下: 随机选取k个对象作为簇中心: Do 计算所有对象到这k个簇中心的距离,将距离最近的 ...

  5. 算法 - k-means算法

    一.聚类思想 所谓聚类算法是指将一堆没有标签的数据自动划分成几类的方法,属于无监督学习方法,这个方法要保证同一类的数据有相似的特征,如下图所示:     根据样本之间的距离或者说是相似性(亲疏性),把 ...

  6. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

  7. GMM算法k-means算法的比较

    1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...

  8. 机器学习sklearn19.0聚类算法——Kmeans算法

    一.关于聚类及相似度.距离的知识点 二.k-means算法思想与流程 三.sklearn中对于kmeans算法的参数 四.代码示例以及应用的知识点简介 (1)make_blobs:聚类数据生成器 sk ...

  9. 【转】 聚类算法-Kmeans算法的简单实现

    1. 聚类与分类的区别: 首先要来了解的一个概念就是聚类,简单地说就是把相似的东西分到一组,同 Classification (分类)不同,对于一个 classifier ,通常需要你告诉它“这个东西 ...

  10. 聚类算法——KMEANS算法

    聚类概念 无监督问题:我们手里没有标签 聚类:相似的东西分到一组 难点:如何评估,如何调参 基本概念 要得到簇的个数,需要指定K值 质心:均值,即向量各维取平均即可 距离的度量:常用欧几里得距离和余弦 ...

随机推荐

  1. laravel框架三级联动,详细代码

    这里运用到省份表中,下面是效果图 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 需要一个省份表,里面的字段要有个pid,name这些字段 下面是控制器代码,(Cit ...

  2. 2023-05-12:存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号, 给你一个数组 graph 表示这个图, 其中,graph[i] 是一个列表,由所有与节点 i

    2023-05-12:存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号, 给你一个数组 graph 表示这个图, 其中,graph[i] 是一个列表,由所有与节点 i ...

  3. ModuleNotFoundError: No module named 'flask_sqlalchemy'

    ModuleNotFoundError: No module named 'flask_sqlalchemy' 解决: pip install flask_sqlalchemy

  4. 狂神说ngnix笔记

    Nginx 一.什么是Nginx 二.Nginx的作用 三.Nginx的安装 1. Windows下安装 2.Linux下安装 3.Nginx目录结构 4.Nginx常用命令 5.Nginx配置文件结 ...

  5. 深入理解 python 虚拟机:破解核心魔法——反序列化 pyc 文件

    深入理解 python 虚拟机:破解核心魔法--反序列化 pyc 文件 在前面的文章当中我们详细的对于 pyc 文件的结构进行了分析,pyc 文件主要有下面的四个部分组成:魔术. Bite Filed ...

  6. 为什么 Biopython 的在线 BLAST 这么慢?

    用过网页版本 BLAST 的童鞋都会发现,提交的序列比对往往在几分钟,甚至几十秒就可以得到比对的结果:而通过调用 API 却要花费几十分钟或者更长的时间!这到底是为什么呢? NCBIWWW 基本用法 ...

  7. 【python基础】if语句-语法格式

    if语句-语法格式 简单理解if语句之后,我们的if语句语法格式有多种,选择使用哪种取决于要测试的条件数 1.if结构 最简单的if语句只有一个条件测试和一个代码块 其语法格式: 假设想要指导一个学员 ...

  8. 一分钟学一个 Linux 命令 - mv 和 cp

    前言 大家好,我是god23bin.欢迎来到<一分钟学一个 Linux 命令>系列,今天需要你花两分钟时间来学习下,因为今天要讲的是两个命令,mv 和 cp 命令. mv 什么是 mv 命 ...

  9. RT-Thread线程构建

    RT-Thread 操作系统的启动过程如下 main()函数作为其中的一个线程在运行. 如果想新建一个线程,和main()线程并行运行,步骤如下:   第一步:线程初始化函数申明 static voi ...

  10. 【python基础】复杂数据类型-字典(遍历)

    一个字典可能只包含几个键值对,也可能包含数百万个键值对,所以Python支持字典遍历.字典可用于以各种方式存储信息,因此有多种遍历字典的方式:可遍历字典的所有键值对.键或值. 1.遍历所有的键值对 其 ...