题目链接

题目

题目描述

Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These atoms have some properties. When two of these atoms collide, one of them disappears and a lot of power is produced. Researchers know the way every two atoms perform when collided and the power every two atoms can produce.

You are to write a program to make it most powerful, which means that the sum of power produced during all the collides is maximal.

输入描述

There are multiplecases. The first line of each case has an integer N (2 <= N <= 10), whichmeans there are N atoms: A1, A2, ... , AN.Then N lines follow. There are N integers in each line. The j-th integer on thei-th line is the power produced when Ai and Aj collidewith Aj gone. All integers are positive and not larger than 10000.The last case isfollowed by a 0 in one line.There will be no morethan 500 cases including no more than 50 large cases that N is 10.

输出描述

Output the maximalpower these N atoms can produce in a line for each case.

示例1

输入

2
0 4
1 0
3
0 20 1
12 0 1
1 10 0
0

输出

4
22

题解

知识点:状压dp。

经典的TSP问题。这道题由于可以随便找一个 \(A\) 撞随便一个 \(B\) ,所以没必要记录上一个原子是啥,设 \(dp[st]\) 表示状态 \(st\) 的最大值。由于 \(A\) 撞 \(B\) 只会消失 \(B\) 并得到 \((A,B)\) 的能量,因此 \(A\) (编号 \(i\) )要满足状态中没用过,\(B\) (编号 \(j\) )满足状态中用过,于是有转移方程:

\[dp[st] = max(dp[st], dp[st \wedge (1 << (j - 1))] + g[i][j])
\]

用记忆化搜索也能写。

时间复杂度 \(O(n^22^n)\)

空间复杂度 \(O(2^n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int n;
int g[17][17];
int dp[1 << 11]; int dfs(int st) {
if (~dp[st]) return dp[st];
for (int i = 1;i <= n;i++) {
if ((st >> (i - 1)) & 1) continue;
for (int j = 1;j <= n;j++) {
if (!((st >> (j - 1)) & 1)) continue;
dp[st] = max(dp[st], dfs(st ^ (1 << (j - 1))) + g[i][j]);
}
}
return dp[st];
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
while (cin >> n, n) {
for (int i = 1;i <= n;i++)
for (int j = 1;j <= n;j++)
cin >> g[i][j];
memset(dp, -1, sizeof(dp));
int ans = 0;
dp[0] = 0;
for (int i = 1;i <= n;i++) {
ans = max(ans, dfs(((1 << n) - 1) ^ (1 << (i - 1))));
}
cout << ans << '\n';
}
return 0;
}

NC15832 Most Powerful的更多相关文章

  1. HDOJ 3593 The most powerful force

    树形DP / 泛化物品的背包...可以去看09年徐持衡论文<浅谈几类背包问题> The most powerful force Time Limit: 16000/8000 MS (Jav ...

  2. CodeForces 86D Powerful array(莫队+优化)

    D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard i ...

  3. hdu 4150 Powerful Incantation

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4150 Powerful Incantation Description Some dangerous ...

  4. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  5. 10+ powerful debugging tricks with Visual Studio

    10+ powerful debugging tricks with Visual Studio Original link : http://www.codeproject.com/Articles ...

  6. zoj 3471 Most Powerful

    题目链接:zoj 3471 Most Powerful  作者:jostree 转载请说明出处 很经典的状态dp,使用i的二进制位表示粒子的状态,0表示存在,1表示不存在.dp[i]表示在状态i的情况 ...

  7. zoj 3471 Most Powerful(状态压缩dp)

    Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These ato ...

  8. codefroce D. Powerful array[初识块状数组]

    codefroce D. Powerful array[初识块状数组] 由于是初始所以,仅仅能先用别人的分析.囧... 题目: 给定一个数列:A1, A2,--,An,定义Ks为区间(l,r)中s出现 ...

  9. D. Powerful array

    D. Powerful array 题意 给定一个数列:a[i] (1<= i <= n) K[j]表示 在区间 [l,r]中j出现的次数.有t个查询,每个查询l,r,对区间内所有a[i] ...

  10. The new powerful SQL executing schedule monthly or weekly in DB Query Analyzer 7.01

    1 About DB Query Analyzer DB Query Analyzer is presented by Master Genfeng,Ma from Chinese Mainland. ...

随机推荐

  1. 在Python中使用Process创建子进程遇到的问题

    假如使用Process创建子进程,那么在最后的函数调用时需要加上if __name__ == "__main__":语句,否则会报错. 未使用该语句 代码示例 from multi ...

  2. 域名解析类型及dig,nslookup进行Dns解析过程查看

    本文为博主原创,未经允许不得转载: 通常我们在windows系统下查看域名是不是可以正常访问,是通过cmd命令打开dos窗口,使用ping 命令来查看域名是不是可以正常访问,使用 ping 命令正常访 ...

  3. SV 字符串类型

    概述 常见使用方式 string b; string b=""; // 拼接字符串 string a = {"hi",b}; // 将字符串a赋值给[15:0] ...

  4. RSA趣题篇(简单型)

    1.n与p的关系 题目 ('n=', 288990088827100766680640490138486855101396196362885475612662192799072729620922966 ...

  5. [转帖]解Bug之路-记一次JVM堆外内存泄露Bug的查找

    https://zhuanlan.zhihu.com/p/245401095 解Bug之路-记一次JVM堆外内存泄露Bug的查找 前言 JVM的堆外内存泄露的定位一直是个比较棘手的问题.此次的Bug查 ...

  6. [转帖]nginx反向代理时保持长连接

    https://www.cnblogs.com/liufarui/p/11075630.html ·[场景描述] HTTP1.1之后,HTTP协议支持持久连接,也就是长连接,优点在于在一个TCP连接上 ...

  7. [转帖]038-拯救大兵瑞恩之 TiDB 如何在 TiKV 损坏的情况下恢复

    https://tidb.net/blog/4b5451bb?utm_source=tidb-community&utm_medium=referral&utm_campaign=re ...

  8. [转帖]TiFlash DeltaTree 存储引擎设计及实现分析 - Part 1

    https://tidb.net/book/book-rush/features/tiflash-code/tiflash-deltatree TiFlash 是 TiDB 的分析引擎,是 TiDB ...

  9. kafka的学习之二_kafka的压测与GUI管理

    kafka的学习之二_kafka的压测与GUI管理 第一部分创建topic cd /root/kafka_2.13-3.5.0 bin/kafka-topics.sh --create --boots ...

  10. OpenEuler2203使用rpm方式安装Oracle19c的过程

    OpenEuler2203使用rpm方式安装Oracle19c的过程 安装介质 oracle-database-preinstall-19c-1.0-1.el7.x86_64.rpm oracle-d ...