Problem Statement

There are $N$ balls arranged from left to right.
The color of the $i$-th ball from the left is Color $C_i$, and an integer $X_i$ is written on it.

Takahashi wants to rearrange the balls so that the integers written on the balls are non-decreasing from left to right.
In other words, his objective is to reach a situation where, for every $1\leq i\leq N-1$, the number written on the $(i+1)$-th ball from the left is greater than or equal to the number written on the $i$-th ball from the left.

For this, Takahashi can repeat the following operation any number of times (possibly zero):

Choose an integer $i$ such that $1\leq i\leq N-1$.

If the colors of the $i$-th and $(i+1)$-th balls from the left are different, pay a cost of $1$.
(No cost is incurred if the colors are the same).

Swap the $i$-th and $(i+1)$-th balls from the left.

Find the minimum total cost Takahashi needs to pay to achieve his objective.

Constraints

  • $2 \leq N \leq 3\times 10^5$
  • $1\leq C_i\leq N$
  • $1\leq X_i\leq N$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$C_1$ $C_2$ $\ldots$ $C_N$
$X_1$ $X_2$ $\ldots$ $X_N$

Output

Print the minimum total cost Takahashi needs to pay to achieve his objective, as an integer.


Sample Input 1

5
1 5 2 2 1
3 2 1 2 1

Sample Output 1

6

Let us represent a ball as $($Color$,$ Integer$)$.
The initial situation is $(1,3)$, $(5,2)$, $(2,1)$, $(2,2)$, $(1,1)$.
Here is a possible sequence of operations for Takahashi:

  • Swap the $1$-st ball (Color $1$) and $2$-nd ball (Color $5$). Now the balls are arranged in the order $(5,2)$, $(1,3)$, $(2,1)$, $(2,2)$, $(1,1)$.
  • Swap the $2$-nd ball (Color $1$) and $3$-rd ball (Color $2$). Now the balls are arranged in the order $(5,2)$, $(2,1)$, $(1,3)$, $(2,2)$, $(1,1)$.
  • Swap the $3$-rd ball (Color $1$) and $4$-th ball (Color $2$). Now the balls are in the order $(5,2)$, $(2,1)$, $(2,2)$, $(1,3)$, $(1,1)$.
  • Swap the $4$-th ball (Color $1$) and $5$-th ball (Color $1$). Now the balls are in the order $(5,2)$, $(2,1)$, $(2,2)$, $(1,1)$, $(1,3)$.
  • Swap the $3$-rd ball (Color $2$) and $4$-th ball (Color $1$). Now the balls are in the order$(5,2)$, $(2,1)$, $(1,1)$, $(2,2)$, $(1,3)$.
  • Swap the $1$-st ball (Color $5$) and $2$-nd ball (Color $2$). Now the balls are in the order $(2,1)$, $(5,2)$, $(1,1)$, $(2,2)$, $(1,3)$.
  • Swap the $2$-nd ball (Color $5$) and $3$-rd ball (Color $1$). Now the balls are in the order $(2,1)$, $(1,1)$, $(5,2)$, $(2,2)$, $(1,3)$.

After the last operation, the numbers written on the balls are $1,1,2,2,3$ from left to right, which achieves Takahashi's objective.

The $1$-st, $2$-nd, $3$-rd, $5$-th, $6$-th, and $7$-th operations incur a cost of $1$ each, for a total of $6$, which is the minimum.
Note that the $4$-th operation does not incur a cost since the balls are both in Color $1$.


Sample Input 2

3
1 1 1
3 2 1

Sample Output 2

0

All balls are in the same color, so no cost is incurred in swapping balls.


Sample Input 3

3
3 1 2
1 1 2

首先当且仅当 \(X_i<X_{i+1}\) 才会交换第 \(i\) 个和第 \(i+1\) 个。交换完后会减少一个逆序对。所以不考虑颜色,交换次数等于逆序对个数。

考虑颜色如果两个数颜色相同,那么不计价值。所以答案还要减去同颜色的逆序对个数即可。

#include<bits/stdc++.h>
using namespace std;
const int N=5005;
int x[N],c,y,t[N],n,m;
long long dp[N][N],ans;
int main()
{
memset(dp,-0x7f,sizeof(dp));
dp[0][0]=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",x+i);
for(int i=1;i<=m;i++)
scanf("%d%d",&c,&y),t[c]+=y;
for(int i=1;i<=n;i++)
{
dp[i][0]=dp[i-1][0];
for(int j=1;j<=n;j++)
dp[i][j]=dp[i-1][j-1]+t[j]+x[i],dp[i][0]=max(dp[i][0],dp[i-1][j-1]),ans=max(ans,dp[i][j]);
}
printf("%lld",ans);
}

[ABC261F] Sorting Color Balls的更多相关文章

  1. AtCoder Beginner Contest 261 F // 树状数组

    题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...

  2. Android Animation学习(三) ApiDemos解析:XML动画文件的使用

    Android Animation学习(三) ApiDemos解析:XML动画文件的使用 可以用XML文件来定义Animation. 文件必须有一个唯一的根节点: <set>, <o ...

  3. HDOJ(HDU) 2060 Snooker(英语很重要。。。)

    Problem Description background: Philip likes to play the QQ game of Snooker when he wants a relax, t ...

  4. canvas绘制弹跳小球

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 3P - Snooker

    background: Philip likes to play the QQ game of Snooker when he wants a relax, though he was just a ...

  6. 老男孩Day15作业:商城列表页面(静态)

    一. 一.作业需求: 1.完成商城列表静态页面的抒写 二.博客地址:https://www.cnblogs.com/catepython/p/9205636.html 三.运行环境 操作系统:Win1 ...

  7. Python-Day07-图形用户界面和游戏开发

    Python-100Day-学习打卡Author: Seven_0507Date: 2019-05-22123 文章目录Python图形用户界面和游戏开发1. tkinter模块2. Pygame进行 ...

  8. js 学习四 对象应用 吃货游戏

    游戏来源于 Mdn学习网站: 该例子用于对象的理解非常有效(建议看完上面网站的内容在开始练习) 弹球 body { margin: 0; overflow: hidden; font-family: ...

  9. awsl

    from enum import Enum, uniquefrom math import sqrtfrom random import randint import pygame @uniquecl ...

  10. HDU100题简要题解(2060~2069)

    这十题感觉是100题内相对较为麻烦的,有点搞我心态... HDU2060 Snooker 题目链接 Problem Description background: Philip likes to pl ...

随机推荐

  1. 安装iTerm2和oh-my-zsh

    安装iTerm2和oh-my-zsh 此文是在参考许多教程(见目录:参考)并结合本人安装经历写下的一篇关于iTerm2和oh-my-zsh的认识和超级详细安装教程.全文所有图片均为本人截屏拍摄.希望能 ...

  2. 论文解读(TAMEPT)《A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification》

    论文信息 论文标题:A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classificati ...

  3. Go 并发编程 - 并发安全(二)

    什么是并发安全 并发情况下,多个线程或协程会同时操作同一个资源,例如变量.数据结构.文件等.如果不保证并发安全,就可能导致数据竞争.脏读.脏写.死锁.活锁.饥饿等一系列并发问题,产生重大的安全隐患,比 ...

  4. SQL Server用户的设置与授权

    SQL Server用户的设置与授权 SSMS 登陆方式有两种,一是直接使用Windows身份验证,二是SQL Server身份验证.使用SQL Server用户设置与授权不仅可以将不同的数据库开放给 ...

  5. 织梦tag怎么显示每个tag相应的文章数量

    有些时候我们想实现类似于wordpress那样的tag,就是在显示tag的链接和tag名的同时,还能显示每个tag关联的文章的数量.如下图所示: 这就需要修改/include/taglib/tag.l ...

  6. Python并发编程——threading、开启线程 、线程进程对比、线程方法、守护线程、GIL、同步锁、死锁和递归锁、信号量、Event、condition、定时器、queue、concurrent

    文章目录 内容回顾 一 threading模块介绍 二 开启线程的两种方式 三 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 四 练习 五 线程相关的其他方法 六 守护线程 七 Pyth ...

  7. 编译python为可执行文件遇到的问题:使用python-oracledb连接oracle数据库时出现错误:DPY-3010

    错误原文: DPY-3010: connections to this database server version are not supported by python-oracledb in ...

  8. vue2.0组件之间传递数据

    vue2.0组件之间传递数据 一,父向子 当父组件向子组件传数据的时候用这种方法比较简单.步骤为: 1,在子组件中声明props 2,在父组件中使用子组件时传入数据 二,组件之间 在组件之间如果两个组 ...

  9. 传输层协议:TCP/IP协议,UDP的协议

    传输层: 定义了⼀些传输数据的协议和端口号( WWW 端口 80 等),如:TCP(传输控制协议,传输效率低,可靠性强,⽤于传输可靠性要求⾼,数据量⼤的数据), UDP(⽤户数据报协议,与 TCP 特 ...

  10. mybatis-plus使用心得

    mybatis-plus是一款基于mybatis的持久层框架,在mybatis上只做增强不做改变.基本使用流程: 导入依赖坐标: <dependency> <groupId>c ...