1. 概述

接上一篇《深入 K8s 网络原理(一)- Flannel VXLAN 模式分析》,今天我们继续来分析 Kubernetes Service 的实现原理。

2. 准备 Service 和 Pods 资源

镜像和上一篇一样;

Deployment 的 YAML 如下:

  • nginx-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:test1
ports:
- containerPort: 80

对应的 Service YAML 如下:

  • nginx-service.yaml
apiVersion: v1
kind: Service
metadata:
name: nginx-service
spec:
type: NodePort
selector:
app: nginx
ports:
- protocol: TCP
port: 80
nodePort: 30007

3. K8s 里 Service 的实现原理

Kubernetes 提供了几种不同类型的 Service,包括:

  • ClusterIP:这是最常见的 Service 类型,为 Service 提供一个集群内部的 IP 地址,使得 Service 只能在集群内部访问。
  • NodePort:这种类型的 Service 在每个节点上开放一个端口(NodePort),从而允许从集群外部通过 <NodeIP>:<NodePort> 访问 Service。
  • LoadBalancer:这种类型的 Service 通常由云提供商支持,它会在集群外部创建一个负载均衡器,将外部流量分发到集群内的 Pods。
  • ExternalName:通过返回一个名字(而非 IP 地址)来指向外部服务。

接着具体来看 Service 的实现。

3.1 kube-proxy 组件

Kubernetes 集群中每个节点上会运行一个关键组件 kube-proxy,它负责为 Service 对象实现网络代理,使得网络流量可以透明地定向到后端 Pods。kube-proxy 支持几种不同的代理模式,最常见的是 iptables 模式和 IPVS 模式。

  1. iptables 模式
  • 在这种模式下,kube-proxy 使用 iptables 规则来捕获到达 Service 的流量,并将其重定向到后端 Pods。每当 Service 或 Pod 发生变化时,kube-proxy 都会更新 iptables 规则。
  • iptables 模式是最简单且广泛使用的,但在大规模集群中可能会面临性能问题,因为每个网络包都需要通过不短的规则链进行处理。
  1. IPVS (IP Virtual Server) 模式
  • IPVS 模式使用内核的 IPVS 功能,该功能提供了内置的负载均衡功能。与 iptables 相比,IPVS 可以处理更大规模的流量,拥有更好的性能和更复杂的负载均衡算法(最少连接等)。
  • 在这种模式下,kube-proxy 会创建一个虚拟服务器,为每个 Service 分配一个虚拟 IP(VIP),并将流量负载均衡到后端 Pods。

以 kube-proxy 的 iptables 模式为例,我们具体来看下 Service 创建后,iptables 是如何将 Service 流量转到 pods 上的。

3.2 iptables 简介

简单介绍下 iptables:

iptables 是一种在 Linux 系统中广泛使用的工具,它允许管理员配置内核的 netfilter 模块,以控制网络数据包的流入流出。这个工具提供了一个框架,用于定义规则,这些规则决定了如何处理经过网络接口的数据包。

iptables 的核心功能主要包括:

  • 数据包过滤:iptables 最常用于过滤数据包,即决定哪些数据包可以通过网络接口,哪些应该被阻止。
  • 网络地址转换 (NAT):它可以用于修改数据包的源或目的地址,常用于路由和隐藏内部网络结构。
  • 端口转发:iptables 可以重定向到特定端口的数据流,用于设置端口转发。

刚从铺灰的硬盘里发现一张三年前画的 iptables 相关的图(我都忘记这个图应该叫啥名字了):

3.3 iptables 规则

下面具体看下 Service 对应的 iptables 规则。

3.3.1 Service,Pod 和 Host 信息

前面创建了 Service 和 Deployment,对应的 Service 和 Pod 资源如下:

  • kgsvc
NAME            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
nginx-service NodePort 10.107.33.105 <none> 80:30007/TCP 152m
  • kgpoowide
NAME                                READY   STATUS    RESTARTS   AGE    IP           NODE
nginx-deployment-7fbb8f4b4c-89bds 1/1 Running 0 155m 10.244.2.4 minikube-m03
nginx-deployment-7fbb8f4b4c-d29zm 1/1 Running 0 155m 10.244.1.5 minikube-m02

此外,我的 K8s 集群包括3个节点,nodes 的 ip/hostname 信息如下:

192.168.49.2	minikube
192.168.49.3 minikube-m02
192.168.49.4 minikube-m03

3.3.2 从 NodePort 入手寻找 iptables 规则

现在进到 minikube 节点,也就是 K8s 主节点,查看下 nat 表的链信息,过滤下 NodePort 端口 30007:

  • sudo iptables -t nat -L | grep 30007
KUBE-EXT-V2OKYYMBY3REGZOG  tcp  --  anywhere anywhere /* default/nginx-service */ tcp dpt:30007

可以看到一条链:KUBE-EXT-V2OKYYMBY3REGZOG,具体看下这条链的信息:

  • sudo iptables -t nat -L KUBE-EXT-V2OKYYMBY3REGZOG -v
Chain KUBE-EXT-V2OKYYMBY3REGZOG (1 references)
pkts bytes target prot opt in out source destination
0 0 KUBE-SVC-V2OKYYMBY3REGZOG all -- any any anywhere anywhere

从这里可以看到 KUBE-EXT-V2OKYYMBY3REGZOG 有一条子链 KUBE-SVC-V2OKYYMBY3REGZOG。继续看 KUBE-SVC-V2OKYYMBY3REGZOG 链:

  • sudo iptables -t nat -L KUBE-SVC-V2OKYYMBY3REGZOG -v
Chain KUBE-SVC-V2OKYYMBY3REGZOG (2 references)
pkts bytes target prot opt in out source destination
0 0 KUBE-SEP-J2DHXTF62PN2AN4F all -- any any anywhere anywhere /* default/nginx-service -> 10.244.1.5:80 */ statistic mode random probability 0.50000000000
0 0 KUBE-SEP-A4R5AW5RLMEQF7RP all -- any any anywhere anywhere /* default/nginx-service -> 10.244.2.4:80 */

进一步可以找到两条 KUBE-SVC-V2OKYYMBY3REGZOG 的子链 KUBE-SEP-J2DHXTF62PN2AN4F 和 KUBE-SEP-A4R5AW5RLMEQF7RP,这里对应2个 pods。以 KUBE-SEP-J2DHXTF62PN2AN4F 为例继续跟:

  • sudo iptables -t nat -L KUBE-SEP-J2DHXTF62PN2AN4F -v
Chain KUBE-SEP-J2DHXTF62PN2AN4F (1 references)
pkts bytes target prot opt in out source destination
0 0 DNAT tcp -- any any anywhere anywhere /* default/nginx-service */ tcp to:10.244.1.5:80

到这里 target 不再是其他链,而是 DNAT,也就是请求 Service 的 NodePort 最终流量被 DNAT 到了 10.244.1.5:8010.244.2.4:80 这两个 Endpoints,它们分别对应2个 pods。

3.3.3 从 PREROUTING 和 OUTPUT 链寻找 K8s 相关子链

先看 PREROUTING:

  • sudo iptables -t nat -L PREROUTING -v
Chain PREROUTING (policy ACCEPT 5 packets, 300 bytes)
pkts bytes target prot opt in out source destination
99 5965 KUBE-SERVICES all -- any any anywhere anywhere /* kubernetes service portals */

可以看到入向流量全部都会经过 KUBE-SERVICES 链处理。继续看 OUTPUT:

sudo iptables -t nat -L OUTPUT -v

Chain OUTPUT (policy ACCEPT 3355 packets, 202K bytes)
pkts bytes target prot opt in out source destination
29961 1801K KUBE-SERVICES all -- any any anywhere anywhere /* kubernetes service portals */

同样全部出向流量也被 KUBE-SERVICES 链处理。继续看下 KUBE-SERVICES 链:

  • sudo iptables -t nat -L KUBE-SERVICES -v
Chain KUBE-SERVICES (2 references)
pkts bytes target prot opt in out source destination
0 0 KUBE-SVC-V2OKYYMBY3REGZOG tcp -- any any anywhere 10.107.33.105 /* default/nginx-service cluster IP */ tcp dpt:http
3391 203K KUBE-NODEPORTS all -- any any anywhere anywhere /* kubernetes service nodeports; NOTE: this must be the last rule in this chain */ ADDRTYPE match dst-type LOCAL

可以看到2条子链,一个是表示 Nginx Service 的 Cluster IP 的子链 KUBE-SVC-V2OKYYMBY3REGZOG,另外一个是表示集群 NodePort 的 KUBE-NODEPORTS 子链。KUBE-SVC-V2OKYYMBY3REGZOG 在前面已经具体看过了,那么 KUBE-NODEPORTS 子链具体又包含啥信息呢:

  • sudo iptables -t nat -L KUBE-NODEPORTS -v
Chain KUBE-NODEPORTS (1 references)
pkts bytes target prot opt in out source destination
0 0 KUBE-EXT-V2OKYYMBY3REGZOG tcp -- any any anywhere anywhere /* default/nginx-service */ tcp dpt:30007

可以看到当 TCP 流量的目的端口是 30007 的时候,就会匹配到 KUBE-EXT-V2OKYYMBY3REGZOG 子链,KUBE-EXT-V2OKYYMBY3REGZOG 子链的内容前面已经具体看过了。换言之,每多创建一个 NodePort 类型的 Service,kube-proxy 就会在 KUBE-NODEPORTS 子链下新挂一条 KUBE-EXT-XXX 子链。

3.3.4 总结下

IP 包进出主机都会经过 KUBE-SERVICES 链,进而根据 destination 地址匹配到不同的子链:

  1. 如果目的地址是某个 Service 的 Cluster IP,那么就匹配到具体的 KUBE-SVC-XXX 处理;
  2. 否则,就匹配到 KUBE-NODEPORTS 处理;流量匹配到 KUBE-NODEPORTS 后,会进一步根据 tcp 目的端口 来匹配具体的子链 KUBE-EXT-XXX;

如果流量匹配到 KUBE-EXT-XXX 子链,端口命中,那么下一条依旧是表示 Cluster IP 的 KUBE-SVC-XXX,所以两条子链在这里汇合。而 KUBE-SVC-XXX 链上的规则会进一步将 IP 包匹配到 KUBE-SEP-XXX 子链上,这些子链表达的是“Service Endpoints”。默认情况下 KUBE-SVC-XXX 会根据 Pod 数量按照相等的概率将流量分流到多个 KUBE-SEP-XXX 上进一步匹配。而 KUBE-SEP-XXX 链会执行类似“DNAT to:10.244.1.5:80”过程,最终将一开始请求 Service 的流量就丢给了 Pod。

所以,当你通过 NodePort/ClusterIP 方式访问 pods 的时候,以两副本为例,整体流量匹配过程大致如下图:

4. 总结

不总结。明天见。

深入 K8s 网络原理(二)- Service iptables 模式分析的更多相关文章

  1. k8s网络原理

    https://blog.csdn.net/watermelonbig/article/details/80646988 k8s中,每个 Pod 都有一个独立的 IP 地址,所有 Pod 在一个网络空 ...

  2. K8S网络排故障一则--iptables规则

    这个故障源起来在k8s上同时安装ceph群集(测试的时候机器不多啊) 当这两者都OK之后,原来k8s上的服务实例,则有的通,有的不通了. ==================== 所有可能的故障点,f ...

  3. 一次客户需求引发的K8S网络探究

    前言 在本次案例中,我们的中台技术工程师遇到了来自客户提出的打破k8s产品功能限制的特殊需求,面对这个极具挑战的任务,攻城狮最终是否克服了重重困难,帮助客户完美实现了需求?且看本期K8S技术案例分享! ...

  4. Kubernetes(k8s)底层网络原理刨析

    目录 1 典型的数据传输流程图 2 3种ip说明 3 Docker0网桥和flannel网络方案 4 Service和DNS 4.1 service 4.2 DNS 5 外部访问集群 5.1 外部访问 ...

  5. k8s Nodeport方式下service访问,iptables处理逻辑(转)

    原文 https://www.myf5.net/post/2330.htm k8s Nodeport方式下service访问,iptables处理逻辑 2017年07月11日 0条评论 976次阅读 ...

  6. ASP.NET Core on K8S深入学习(11)K8S网络知多少

    本篇已加入<.NET Core on K8S学习实践系列文章索引>,可以点击查看更多容器化技术相关系列文章. 一.Kubernetes网络模型 我们都知道Kubernetes作为容器编排引 ...

  7. docker+k8s基础篇二

    Docker+K8s基础篇(二) docker的资源控制 A:docker的资源限制 Kubernetes的基础篇 A:DevOps的介绍 B:Kubernetes的架构概述 C:Kubernetes ...

  8. linux基础-第十四单元 Linux网络原理及基础设置

    第十四单元 Linux网络原理及基础设置 三种网卡模式图 使用ifconfig命令来维护网络 ifconfig命令的功能 ifconfig命令的用法举例 使用ifup和ifdown命令启动和停止网卡 ...

  9. k8s网络之Flannel网络

    k8s网络主题系列: 一.k8s网络之设计与实现 二.k8s网络之Flannel网络 三.k8s网络之Calico网络 简介 Flannel是CoreOS团队针对Kubernetes设计的一个网络规划 ...

  10. k8s网络之Calico网络

    k8s网络主题系列: 一.k8s网络之设计与实现 二.k8s网络之Flannel网络 三.k8s网络之Calico网络 简介 Calico 是一种容器之间互通的网络方案.在虚拟化平台中,比如 Open ...

随机推荐

  1. 实现WebRTC群聊会议室(Mesh方案)

    近期需要做一个类似会议室功能,但网络上大多数是一对一通信,故记录分享希望帮助到有用的人 WebRTC一对一聊天原理 关于WebRTC建立一对一聊天的模板网上很多,可参考以下博客:springboot+ ...

  2. 解读Redis常见命令

    Redis数据结构介绍 Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样: 贴心小建议:命令不要死记,学会查询就好啦 Redis为了方便我们学习, ...

  3. Kong网关

    Kong网关 一.kong网关核心概念 1. Upstream upstream 对象表示虚拟主机名,可用于通过多个服务对传入请求进行负载远的 2. Target 目标ip地址/主机名,其端口表示后端 ...

  4. nginx Ingress Controller Packaged by Bitnami

    环境介绍 节点 master01 work01 work02 主机/ip calico-master01/192.168.195.135 calico-master01/192.168.195.135 ...

  5. 9.1 运用API创建多线程

    在Windows平台下创建多线程有两种方式,读者可以使用CreateThread函数,或者使用beginthreadex函数均可,两者虽然都可以用于创建多线程环境,但还是存在一些差异的,首先Creat ...

  6. ⭐volatile⭐ 用volatile关键字则会从内存中直接读取变量的值

  7. Use Closures Not Enumerations

    http://c2.com/  Use Closures Not Enumerations I was really disappointed when this turned out not to ...

  8. 关于LUN的归属控制器

    ALUA (Asymmetric logic Unit Access)  架构 在ALUA (Asymmetric logic Unit Access)  架构中,LUN有归属控制器,客户在创建LUN ...

  9. 01--OpenStack 手动安装手册(Icehouse)

    #OpenStack 手动安装手册(Icehouse) 声明:本博客欢迎转发,但请保留原作者信息!作者:[罗勇] 云计算工程师.敏捷开发实践者博客:http://yongluo2013.github. ...

  10. python爬虫入门(1)-开发环境配置

    所谓的爬虫,就是通过模拟点击浏览器发送网络请求,接收站点请求响应,获取互联网信息的一组自动化程序. 也就是,只要浏览器(客户端)能做的事情,爬虫都能够做.      现在的互联网大数据时代,给予我们的 ...