基于ReAct机制的AI Agent
当前,在各个大厂纷纷卷LLM的情况下,各自都借助自己的LLM推出了自己的AI Agent,比如字节的Coze,百度的千帆等,还有开源的Dify。
你是否想知道其中的原理?是否想过自己如何实现一套AI Agent?当然,借助LangChain就可以。
1. 简述AI Agent
何为AI Agent呢?如果拿人来对比的话,半支烟认为AI Agent就是一个会思考和行动的人,其中LLM就是这个人的大脑。
说白了,AI Agent就是借助LLM这个大脑,加上一些 能够感知外部环节 和 能够发起行动 的部件,共同组成的一个 机器人。
那怎样能够让 AI Agent这个机器人,充分利用LLM 和 各种部件呢?那ReAct就是这个协作工具。利用ReAct机制,LLM可以很好的结合外部环境和行动组件,形成一个完整的AI Agent。
下面将探讨ReAct框架的概念、原理、优势,并通过代码示例展示如何在LangChain中使用ReAct构建AI Agent。
2. ReAct概念和原理
2.1 为什么需要ReAct
我们知道,LLM在训练完毕后,会具备较强的推理能力,但是他的知识随着时间的推移会过时,但是又不可能经常性的去训练LLM,毕竟每次训练的成本太高了。
那怎么解决这个问题?机器可以像人一样自己主动去学习和搜索新知识呀。
那机器怎么知道什么时候该去搜索知识?什么时候时候该去调用什么样的工具解决当前的问题呢?
ReAct应运而生。ReAct的核心在于,推理和行动。
2.2 ReAct的定义
ReAct(Reasoning and Action)是一个框架,其概念来源于一篇论文,其核心思想,就是通过思维链的方式,引导模型将复杂问题进行拆分,一步一步地进行推理(Reasoning)和行动(Action),同时还引入了观察(Observation)环节,在每次执行(Action)之后,都会先观察(Observation)当前现状,然后再进行下一步的推理(Reason)。
ReAct这个框架,就是要让LLM,进行推理,然后采取行动与外界环境互动。
ReAct这个框架,就是要让开发者一步步引导LLM进行推理,然后根据推理的结果,判断采取哪个行动。
2.3 ReAct的核心组件
ReAct框架的核心组件包括:
- 思维链(Chain of Thought):将一个大的复杂任务进行拆解,拆解成多个思维步骤。
- 推理(Reasoning):负责分析和处理输入的数据,生成有效的决策。
- 行动(Action):执行具体的操作,比如搜索、执行代码,或者其余自定义的行动。
- 观察(Observation):监控和收集环境反馈的数据,为下一步的推理和行动提供依据。
2.4 工作流程
ReAct框架的工作流程如下:
- 输入数据:接收用户输入或环境数据。
- 推理阶段:分析输入数据,生成决策和计划。
- 行动阶段:根据决策执行具体操作。
- 观察阶段:监控操作结果,收集反馈数据。
- 循环迭代:根据反馈数据调整推理和行动,持续优化结果。

2.5 举个例子说明ReAct步骤
比如,要知道2024年周杰伦最新的演唱会是时间和地点是什么,通过ReAct机制,会被拆解成以下步骤:
推理1:用户想知道2024年周杰伦最新的演唱会是时间和地点是什么,需要查找最新的信息。
行动1:调用Google的搜索API进行搜索。
观察1:搜索结束,搜索的结果中出现一些关于《2024年周杰伦最新的演唱会》的网页信息。
推理2:搜索出来的网页较多,大概浏览前6个网页的具体内容。
行动2:点击第一个网页,开始浏览。
观察2:浏览结束,浏览的网页内容提及到了2024年周杰伦最新的演唱会信息。
推理3:针对网页的内容进行,问题的总结。
结果:将最终的答案输出给用户。
3. LangChain的ReAct机制实现AI Agent
以上我们已经了解的原理和步骤,接下来我们使用LangChain定义一个ReAct机制的AI Agent。
3.1 示例
比如,在不使用ReAct机制借助外部工具的情况下,让LLM帮我们计算两个小数相加,则直接出错。

然后,借助ReAct机制,会让LLM自动使用自定义工具,最终计算正确。


然后,继续测试,问别的问题,借助ReAct机制,则不会使用到工具,直接给出答案。

3.2 代码
具体代码如下:
from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain.memory import ConversationBufferMemory
from langchain.schema import HumanMessage
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAI
# 模型
model = ChatOpenAI(model="gpt-3.5-turbo",
openai_api_key="sk-XXXXXXXXXX",
openai_api_base="https://api.aigc369.com/v1")
# 直接让模型计算数字,模型会算错
model.invoke([HumanMessage(content="你帮我算下,3.941592623412424+4.3434532535353的结果")])
# 下面开始使用ReAct机制,定义工具,让LLM使用工具做专业的事情。
# 定义工具,要继承自LangChain的BaseTool
class SumNumberTool(BaseTool):
name = "数字相加计算工具"
description = "当你被要求计算2个数字相加时,使用此工具"
def _run(self, a, b):
return a.value + b.value
# 工具合集
tools = [SumNumberTool()]
# 提示词,直接从langchain hub上下载,因为写这个ReAct机制的prompt比较复杂,直接用现成的。
prompt = hub.pull("hwchase17/structured-chat-agent")
# 定义AI Agent
agent = create_structured_chat_agent(
llm=model,
tools=tools,
prompt=prompt
)
# 使用Memory记录上下文
memory = ConversationBufferMemory(
memory_key='chat_history',
return_messages=True
)
# 定义AgentExecutor,必须使用AgentExecutor,才能执行代理定义的工具
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, memory=memory, verbose=True, handle_parsing_errors=True
)
# 测试使用到工具的场景
agent_executor.invoke({"input": "你帮我算下3.941592623412424+4.3434532535353的结果"})
# 测试不使用工具的场景
agent_executor.invoke({"input": "请你充当稿件审核师,帮我看看'''号里的内容有没有错别字,如果有的话帮我纠正下。'''今天班级里的学生和老实要去哪里玩'''"})
4. 总结
本文主要介绍了AI Agent的概念,探讨了ReAct框架的概念、原理、优势,并通过代码示例展示如何在LangChain中使用ReAct构建AI Agent。希望对你有帮助!
======>>>>>> 关于我 <<<<<<======
本篇完结!欢迎点赞 关注 收藏!!!
原文链接:https://mp.weixin.qq.com/s/OAQ3nPeRaC7mSNFNFDqF_A

基于ReAct机制的AI Agent的更多相关文章
- 基于React Native的移动平台研发实践分享
转载:http://blog.csdn.net/haozhenming/article/details/72772787 本文目录: 一.React Native 已经成为了移动前端技术的趋势 二.基 ...
- React-Native(三):React Native是基于React设计的
React Native是基于React js设计的. 参考:<React 入门实例教程> React 起源于 Facebook 的内部项目,因为该公司对市场上所有 JavaScript ...
- 放弃antd table,基于React手写一个虚拟滚动的表格
缘起 标题有点夸张,并不是完全放弃antd-table,毕竟在react的生态圈里,对国人来说,比较好用的PC端组件库,也就antd了.即便经历了2018年圣诞彩蛋事件,antd的使用者也不仅不减,反 ...
- 基于React实现的【绿色版电子书阅读器】,支持离线下载
代码地址如下:http://www.demodashi.com/demo/12052.html MyReader 绿色版电子书阅读器 在线地址:http://myreader.linxins.com ...
- 基于React的PC网站前端架构分析
代码地址如下:http://www.demodashi.com/demo/12252.html 本文适合对象 有过一定开发经验的初级前端工程师: 有过完整项目的开发经验,不论大小: 对node有所了解 ...
- 基于 React.js + Redux + Bootstrap 的 Ruby China 示例 (转)
一直学 REACT + METEOR 但路由部分有点问题,参考一下:基于 React.js + Redux + Bootstrap 的 Ruby China 示例 http://react-china ...
- RSuite 一个基于 React.js 的 Web 组件库
RSuite http://rsuite.github.io RSuite 是一个基于 React.js 开发的 Web 组件库,参考 Bootstrap 设计,提供其中常用组件,支持响应式布局. 我 ...
- 基于React Native的Material Design风格的组件库 MRN
基于React Native的Material Design风格的组件库.(为了平台统一体验,目前只打算支持安卓) 官方网站 http://mrn.js.org/ Github https://git ...
- Android的事件处理机制(一)------基于回调机制的事件处理
Android平台的事件处理机制有两种,一种是基于回调机制的,一种是基于监听接口的,现介绍第一种:基于回调机制的事件处理.Android平台中,每个View都有自己的处理事件的回调方法,开发人员可以通 ...
- 基于react全家桶+antd-design+webpack2+node+express+mongodb开发的前后台博客系统
很久没更新博客,最近也有点忙,然后业余时间搞了一个比较完整基于react全家桶+antd-design+webpack2+node+express+mongodb开发的前后台博客系统的流程系统,希望对 ...
随机推荐
- 重新整理数据结构与算法(c#)—— 算法套路二分法[二十四]
前言 前面写过二分法使用的是递归手法,然后该节才有不递归的方式执行. 二分法的时间复杂度为log(2)n.空间复杂度为:1. 正文 代码: static void Main(string[] args ...
- 【hibernate】使用HQL对页面进行时间校验操作(预约)
[hibernate]使用HQL对页面进行时间校验操作(预约) 预约系统中的时间校验 正好接了一个预约的需求,还需要用java 7和hibernate 1.时间冲突,时间段不能重复,在保存前对数据库进 ...
- 力扣1068(MySQL)-产品销售分析Ⅰ(简单)
题目: 销售表 Sales: 产品表 Product: 写一条SQL 查询语句获取 Sales 表中所有产品对应的 产品名称 product_name 以及该产品的所有 售卖年份 year 和 价格 ...
- 力扣608(MySQL)-树节点(中等)
题目: 给定一个表 tree,id 是树节点的编号, p_id 是它父节点的 id . 树中每个节点属于以下三种类型之一: 叶子:如果这个节点没有任何孩子节点.根:如果这个节点是整棵树的根,即没有父节 ...
- 同为博客,不同风格 ——Hexo另类搭建
简介:通过阿里云云开发平台快速由Hexo创建赛博朋克风格的博客. 一 .通过云开发平台快速创建初始化应用 1.创建相关应用模版请参考链接:Hexo博客框架-轻量.一令部署 2.完成创建后就可以在g ...
- 21克:仅需3天,我们就用Quick BI搭建起数据驾驶舱
简介:数智化并不仅仅是大型企业才需要去思考的课题,而是摆在所有企业面前的一个可选项.借助Quick BI搭建的数据分析体系,21克实现了销售.财务.供应链等多部门业务的数据化支撑,从一份份本地化的E ...
- 阿里云张振尧:阿里云边缘云驱动5G时代行业新价值
简介:近日,以"5G融合通信趋势下的技术创新"为主题的2021中国增值电信及虚拟运营高峰论坛在北京召开,阿里云边缘云高级产品专家张振尧发表了<阿里云边缘云驱动5G时代行业新 ...
- 庖丁解牛-图解MySQL 8.0优化器查询解析篇
简介: SQL优化器本质上是一种高度抽象化的数据接口的实现,经过该设计,客户可以使用更通用且易于理解的SQL语言,对数据进行操作和处理,而不需要关注和抽象自己的数据接口,极大地解放了客户的应用程序. ...
- UWP 写入图片 Exif 信息
本文告诉大家如何在 UWP 中,保存图片的时候,写入 Exif 信息,也就是如照片的 相机型号 制造商 光圈值等信息的写入 在 UWP 中,保存图片或照片需要用到图片编码器,在使用编码器写入前可以设置 ...
- dotnet Microsoft.Recognizers.Text 超强大的自然语言关键词提取库
本文和大家介绍一个使用超级简单,但是功能特别强大的自然语言关键词提取库,可以根据输入的自然语言提取出里面的信息.例如我在一句话里面说了哪些数值变量或者说了手机号码等 先看看下图的一个效果,下图是尝试识 ...